Aberrant vertebral artery and screw placement in lateral mass of c1 in atlantoaxial fixation

2021 ◽  
Vol 8 (4) ◽  
pp. 1
Author(s):  
JK. B. C Parthiban
Spine ◽  
2008 ◽  
Vol 33 (25) ◽  
pp. E942-E949 ◽  
Author(s):  
Jin S. Yeom ◽  
Jacob M. Buchowski ◽  
Kun-Woo Park ◽  
Bong-Soon Chang ◽  
Choon-Ki Lee ◽  
...  

2011 ◽  
Vol 68 (suppl_1) ◽  
pp. onsE246-onsE249 ◽  
Author(s):  
Jae Taek Hong ◽  
Woo Young Jang ◽  
Il Sup Kim ◽  
Seung Ho Yang ◽  
Jae Hoon Sung ◽  
...  

Abstract BACKGROUND AND IMPORTANCE: This is the first report of using the superior lateral mass as an alternative starting point for C1 posterior screw placement, demonstrating the importance of recognizing vertebral artery (VA) anomaly in deciding the surgical strategy for C1 screw placement. CLINICAL PRESENTATION: A 56-year-old man presented with severe neck pain after a fall. Imaging demonstrated an unstable bursting fracture at C4, C1-2 instability, and a subluxation at C2-3. Computed tomography angiography indicated that the persistent first intersegmental artery was located on the left side. The patient underwent anterior-posterior cervical fixation and fusion. Posterior C1 fixation was done with polyaxial screw rod construct using C1 superior lateral mass on the left side and C1 inferior lateral mass on the right side. The patient had no immediate postoperative deficits. At the 8-month follow-up examination, the patient was neurologically intact with a solid cervical fusion. CONCLUSION: The third segment of the VA is heterogeneous; therefore, preoperative radiologic studies should be performed to identify any anatomical variations. Using preoperative 3-dimensional computed tomography angiography, we can precisely identify an anomalous VA, thereby significantly reducing the risk of VA injury. To avoid significant morbidities associated with VA injury, a more optimal entry point for C1 fixation can be selected if a persistent first intersegmental artery or fenestrated VA is detected.


2020 ◽  
Vol 3 (1) ◽  
pp. V10
Author(s):  
Sushil Patkar

Fixation for atlantoaxial dislocation is a challenging issue, and posterior C1 lateral mass and C2 pars–pedicle screw plate–rod construct is the standard of care for atlantoaxial instability. However, vertebral artery injury remains a potential complication. Recent literature has focused on intraoperative navigation, the O-arm, 3D printing, and recently use of robots for perfecting the trajectory and screw position to avoid disastrous injury to the vertebral artery and enhance the rigidity of fixation. These technological advances increase the costs of the surgery and are available only in select centers in the developed world.Review of the axis bone anatomy and study of the stress lines caused by weight transmission reveal that the bone below the articular surface of the superior facet is consistently dense as it lies along the line of weight transmission A new trajectory for the axis screw 3–5 mm below the midpoint of the facet joint and directed downward and medially avoids the course of the vertebral artery and holds the axis rigidly. Divergent screw constructs are biomechanically stronger. Variable screw placement (VSP) plates with long shaft screws permit manipulation of the vertebrae and realignment of the facets to the correct reduced position with fixation in the compression mode.The video can be found here: https://youtu.be/E1msiKjM-aA


Author(s):  
Selda Aksoy ◽  
Bulent Yalcin

Abstract Background Atlantoaxial instability is an important disorder that causes serious symptoms such as difficulties in walking, limited neck mobility, sensory deficits, etc. Atlantal lateral mass screw fixation is a surgical technique that has gained important recognition and popularity. Because accurate drilling area for screw placement is of utmost importance for a successful surgery, we aimed to investigate morphometry of especially the posterior part of C1. Methods One hundred and fifty-eight human adult C1 dried vertebrae were obtained. Measurements were performed directly on dry atlas vertebrae, and all parameters were measured by using a digital caliper accurate to 0.01 mm for linear measurements. Results The mean distance between the tip of the posterior arch and the medial inner edge of the groove was found to be 10.59 ± 2.26 and 10.49 ± 2.20 mm on the right and left, respectively. The mean distance between the tip of the posterior arch and the anterolateral outer edge of the groove was 21.27 ± 2.28 mm (right: 20.96 ± 2.22 mm; left: 21.32 ± 2.27 mm). The mean height of the screw entry zone on the right and left sides, respectively, were 3.86 ± 0.81 and 3.84 ± 0.77 mm. The mean width of the screw entry zone on both sides was 13.15 ± 1.17 and 13.25 ± 1.3 mm. Conclusion Our result provided the literature with a detailed database for the morphometry of C1, especially in relation to the vertebral artery groove. We believe that the data in the present study can help surgeons to adopt a more accurate approach in terms of accurate lateral mass screw placement in atlantoaxial instability.


2017 ◽  
Vol 26 (6) ◽  
pp. 679-683 ◽  
Author(s):  
Marc Moisi ◽  
Christian Fisahn ◽  
Lara Tkachenko ◽  
Shiveindra Jeyamohan ◽  
Stephen Reintjes ◽  
...  

OBJECTIVEPosterior atlantoaxial stabilization and fusion using C-1 lateral mass screw fixation has become commonly used in the treatment of instability and for reconstructive indications since its introduction by Goel and Laheri in 1994 and modification by Harms in 2001. Placement of such lateral mass screws can be challenging because of the proximity to the spinal cord, vertebral artery, an extensive venous plexus, and the C-2 nerve root, which overlies the designated starting point on the posterior center of the lateral mass. An alternative posterior access point starting on the posterior arch of C-1 could provide a C-2 nerve root–sparing starting point for screw placement, with the potential benefit of greater directional control and simpler trajectory. The authors present a cadaveric study comparing an alternative strategy (i.e., a C-1 screw with a posterior arch starting point) to the conventional strategy (i.e., using the lower lateral mass entry site), specifically assessing the safety of screw placement to preserve the C-2 nerve root.METHODSFive US-trained spine fellows instrumented 17 fresh human cadaveric heads using the Goel/Harms C-1 lateral mass (GHLM) technique on the left and the posterior arch lateral mass (PALM) technique on the right, under fluoroscopic guidance. After screw placement, a CT scan was obtained on each specimen to assess for radiographic screw placement accuracy. Four faculty spine surgeons, blinded to the surgeon who instrumented the cadaver, independently graded the quality of screw placement using a modified Upendra classification.RESULTSOf the 17 specimens, the C-2 nerve root was anatomically impinged in 13 (76.5%) of the specimens. The GHLM technique was graded Type 1 or 2, which is considered “acceptable,” in 12 specimens (70.6%), and graded Type 3 or 4 (“unacceptable”) in 5 specimens (29.4%). In contrast, the PALM technique had 17 (100%) of 17 graded Type 1 or 2 (p = 0.015). There were no vertebral artery injuries found in either technique. All screw violations occurred in the medial direction.CONCLUSIONSThe PALM technique showed statistically fewer medial penetrations than the GHLM technique in this study. The reason for this is not clear, but may stem from a more angulated ”up-and-in” screw direction necessary with a lower starting point.


Spine ◽  
2017 ◽  
Vol 42 (18) ◽  
pp. E1067-E1076 ◽  
Author(s):  
Jetan H. Badhiwala ◽  
Farshad Nassiri ◽  
Christopher D. Witiw ◽  
Alireza Mansouri ◽  
Saleh A. Almenawer ◽  
...  

2006 ◽  
Vol 5 (1) ◽  
pp. 83-85 ◽  
Author(s):  
Jae Taek Hong ◽  
Sang Won Lee ◽  
Byung Chul Son ◽  
Jae Hoon Sung ◽  
Il Sub Kim ◽  
...  

✓ Atlantoaxial fixation in which C1–2 screw–rod fixation is performed is a relatively new method. Because reports about this technique are rather scant, little is known about its associated complications. In this report the authors introduce hypoglossal nerve palsy as a complication of this novel posterior atlantoaxial stabilization method. A 67-year-old man underwent a C1–2 screw–rod fixation for persistent neck pain resulting from a Type 2 odontoid fracture that involved disruption of the transverse atlantal ligament. Posterior instrumentation in which a C-1 lateral mass screw and C-2 pedicle screw were placed was performed. Postoperatively, the patient suffered dysphagia with deviation of the tongue to the left side. At the 4-month follow-up examination, bone fusion was noted on plain x-ray studies of the cervical spine. His hypoglossal nerve palsy resolved completely 2 months postoperatively. To the authors’ knowledge, this is the first report in the literature of hypoglossal nerve palsy following C1–2 screw–rod fixation. The hypoglossal nerve is one of the structures that can be damaged during C-1 lateral mass screw placement.


2011 ◽  
Vol 14 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Kalil G. Abdullah ◽  
Amy S. Nowacki ◽  
Michael P. Steinmetz ◽  
Jeffrey C. Wang ◽  
Thomas E. Mroz

Object The C-7 lateral mass has been considered difficult to fit with instrumentation because of its unique anatomy. Of the methods that exist for placing lateral mass screws, none particularly accommodates this anatomical variation. The authors have related 12 distinct morphological measures of the C-7 lateral mass to the ability to place a lateral mass screw using the Magerl, Roy-Camille, and a modified Roy-Camille method. Methods Using CT scans, the authors performed virtual screw placement of lateral mass screws at the C-7 level in 25 male and 25 female patients. Complications recorded included foraminal and articular process violations, inability to achieve bony purchase, and inability to place a screw longer than 6 mm. Violations were monitored in the coronal, axial, and sagittal planes. The Roy-Camille technique was applied starting directly in the middle of the lateral mass, as defined by Pait's quadrants, with an axial angle of 15° lateral and a sagittal angle of 90°. The Magerl technique was performed by starting in the inferior portion of the top right square of Pait's quadrants and angling 25° laterally in the axial plane with a 45° cephalad angle in the sagittal plane. In a modified method, the starting point is similar to the Magerl technique in the top right square of Pait's quadrant and then angling 15° laterally in the axial plane. In the sagittal plane, a 90° angle is taken perpendicular to the dorsal portion of the lateral mass, as in the traditional Roy-Camille technique. Results Of all the morphological methods analyzed, only a combined measure of intrusion of the T-1 facet and the overall length of the C-7 lateral mass was statistically associated with screw placement, and only in the Roy-Camille technique. Use of the Magerl technique allowed screw placement in 28 patients; use of the Roy-Camille technique allowed placement in 24 patients; and use of the modified technique allowed placement in 46 patients. No screw placement by any method was possible in 4 patients. Conclusions There is only one distinct anatomical ratio that was shown to affect lateral mass screw placement at C-7. This ratio incorporates the overall length of the lateral mass and the amount of space occupied by the T-1 facet at C-7. Based on this virtual study, a modified Roy-Camille technique that utilizes a higher starting point may decrease the complication rate at C-7 by avoiding placement of the lateral mass screw into the T1 facet.


Sign in / Sign up

Export Citation Format

Share Document