scholarly journals Methods for analyzing next-generation sequencing data XV. RNA-seq analysis (Part 3)

2020 ◽  
Vol 31 (1) ◽  
pp. 25-34
Author(s):  
Tomoko Terada ◽  
Kentaro Shimizu ◽  
Koji Kadota

2020 ◽  
Author(s):  
Phillip A. Richmond ◽  
Alice M. Kaye ◽  
Godfrain Jacques Kounkou ◽  
Tamar V. Av-Shalom ◽  
Wyeth W. Wasserman

AbstractAcross the life sciences, processing next generation sequencing data commonly relies upon a computationally expensive process where reads are mapped onto a reference sequence. Prior to such processing, however, there is a vast amount of information that can be ascertained from the reads, potentially obviating the need for processing, or allowing optimized mapping approaches to be deployed. Here, we present a method termed FlexTyper which facilitates a “reverse mapping” approach in which high throughput sequence queries, in the form of k-mer searches, are run against indexed short-read datasets in order to extract useful information. This reverse mapping approach enables the rapid counting of target sequences of interest. We demonstrate FlexTyper’s utility for recovering depth of coverage, and accurate genotyping of SNP sites across the human genome. We show that genotyping unmapped reads can correctly inform a sample’s population, sex, and relatedness in a family setting. Detection of pathogen sequences within RNA-seq data was sensitive and accurate, performing comparably to existing methods, but with increased flexibility. We present two examples of ways in which this flexibility allows the analysis of genome features not well-represented in a linear reference. First, we analyze contigs from African genome sequencing studies, showing how they distribute across families from three distinct populations. Second, we show how gene-marking k-mers for the killer immune receptor locus allow allele detection in a region that is challenging for standard read mapping pipelines. The future adoption of the reverse mapping approach represented by FlexTyper will be enabled by more efficient methods for FM-index generation and biology-informed collections of reference queries. In the long-term, selection of population-specific references or weighting of edges in pan-population reference genome graphs will be possible using the FlexTyper approach. FlexTyper is available at https://github.com/wassermanlab/OpenFlexTyper.Author SummaryIn the past 15 years, next generation sequencing technology has revolutionized our capacity to process and analyze DNA sequencing data. From agriculture to medicine, this technology is enabling a deeper understanding of the blueprint of life. Next generation sequencing data is composed of short sequences of DNA, referred to as “reads”, which are often shorter than 200 base pairs making them many orders of magnitude smaller than the entirety of a human genome. Gaining insights from this data has typically leveraged a reference-guided mapping approach, where the reads are aligned to a reference genome and then post-processed to gain actionable information such as presence or absence of genomic sequence, or variation between the reference genome and the sequenced sample. Many experts in the field of genomics have concluded that selecting a single, linear reference genome for mapping reads against is limiting, and several current research endeavors are focused on exploring options for improved analysis methods to unlock the full utility of sequencing data. Among these improvements are the usage of sex-matched genomes, population-specific reference genomes, and emergent graph-based reference pan-genomes. However, advanced methods that use raw DNA sequencing data to inform the choice of reference genome and guide the alignment of reads to enriched reference genomes are needed. Here we develop a method termed FlexTyper, which creates a searchable index of the short read data and enables flexible, user-guided queries to provide valuable insights without the need for reference-guided mapping. We demonstrate the utility of our method by identifying sample ancestry and sex in human whole genome sequencing data, detecting viral pathogen reads in RNA-seq data, African-enriched genome regions absent from the global reference, and HLA alleles that are complex to discern using standard read mapping. We anticipate early adoption of FlexTyper within analysis pipelines as a pre-mapping component, and further envision the bioinformatics and genomics community will leverage the tool for creative uses of sequence queries from unmapped data.



BMC Genomics ◽  
2019 ◽  
Vol 20 (S12) ◽  
Author(s):  
Maximillian Westphal ◽  
David Frankhouser ◽  
Carmine Sonzone ◽  
Peter G. Shields ◽  
Pearlly Yan ◽  
...  

Abstract Background Inadvertent sample swaps are a real threat to data quality in any medium to large scale omics studies. While matches between samples from the same individual can in principle be identified from a few well characterized single nucleotide polymorphisms (SNPs), omics data types often only provide low to moderate coverage, thus requiring integration of evidence from a large number of SNPs to determine if two samples derive from the same individual or not. Methods We select about six thousand SNPs in the human genome and develop a Bayesian framework that is able to robustly identify sample matches between next generation sequencing data sets. Results We validate our approach on a variety of data sets. Most importantly, we show that our approach can establish identity between different omics data types such as Exome, RNA-Seq, and MethylCap-Seq. We demonstrate how identity detection degrades with sample quality and read coverage, but show that twenty million reads of a fairly low quality RNA-Seq sample are still sufficient for reliable sample identification. Conclusion Our tool, SMASH, is able to identify sample mismatches in next generation sequencing data sets between different sequencing modalities and for low quality sequencing data.





Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.



2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document