scholarly journals Immune checkpoint blockade therapy for bladder cancer treatment

2016 ◽  
Vol 57 (Suppl 1) ◽  
pp. S98 ◽  
Author(s):  
Jayoung Kim
2018 ◽  
Vol 13 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Jeffrey M. Clarke ◽  
Daniel J. George ◽  
Stacey Lisi ◽  
April K. S. Salama

2021 ◽  
Vol 11 (6) ◽  
pp. 460
Author(s):  
Arisa Djurian ◽  
Tomohiro Makino ◽  
Yeongjoo Lim ◽  
Shintaro Sengoku ◽  
Kota Kodama

We studied the overview of drug discovery and development to understand the recent trends and potential success factors of interorganizational collaboration by reviewing 1204 transactions performed until 2019 for 107 anticancer drugs approved by the US Food and Drug Administration (FDA) from 1999 to 2018. Immune checkpoint blockade was found to be a significantly active area in interorganizational transactions, especially the number of alliances, compared with other mechanisms of action of small molecules and biologics for cancer treatment. Furthermore, the analysis of pembrolizumab and nivolumab showed that the number of approved indications for these two drugs has been rapidly expanding since their first approval in 2014. Examination of the acquisitions and alliances regarding pembrolizumab and nivolumab showed that many combination partners were developed by US-based biotechnology or start-up companies, the majority of which were biologics. These findings suggest that immune checkpoint blockade is a paradigm for cancer treatment, resulting in huge product sales and continuous indication expansion. Additionally, interorganizational collaboration, especially trial collaboration, is a strategic approach for the development of immune checkpoint blockade agents. The translation of these empirical practices to new drug candidates is expected for the research and development of innovative drugs in the future.


2021 ◽  
Author(s):  
Yiheng Du ◽  
Jin Cao ◽  
Xiang Jiang ◽  
Xiaowei Cai ◽  
Bo Wang ◽  
...  

Abstract Background Bladder cancer (BLCA) is the most common genitourinary tumor but lacks specific diagnostic biomarkers. Recent years have seen significant advances in the use and approval of immune checkpoint blockade (ICB) therapy to manage bladder cancer at advanced stages when platinum-based therapy has failed. The tumor microenvironment (TME) in bladder cancer is an essential player in patient's responsiveness to ICB therapy. Therefore, this manuscript explored the TME and identified CXCL12, a specific marker for inflammatory cancer associated fibroblasts(iCAFs), as potential molecular markers and therapeutic targets for bladder cancer. Methods We examined the gene expression profiles in the TCGA and GEO datasets to reveal the potential association of CXCL12 with the carcinogenesis and prognosis of bladder cancer. Methylation analysis of CXCL12 was performed using the UALCAN and MethSurv databases. The MCP-COUNTER, ESTIMATE, and TIDE algorithms were applied to estimate the TME components and predict immunotherapy responsiveness. An iCAFs signature was constructed using the ssGSEA algorithm. Bioinformatics analysis results were validated through immunohistochemistry of clinical samples. IMvigor210 cohort was used to validate bioinformatic predictions of therapeutic responsiveness to immune checkpoint inhibitors Results Our analysis revealed the potential association between aberrant promoter methylation of CXCL12 and bladder cancer carcinogenesis. CpG sites methylation of the CXCL12 gene body was associated with bladder cancer prognosis. Moreover, the expression level of CXCL12 exhibited a significant correlation with patients' pathological features and prognosis. Through gene enrichment analysis, CXCL12 was demonstrated to be associated with immune modulation and tumor microenvironment remodeling. The MCP-COUNTER and ESTIMATE algorithms verified significant correlations between CXCL12 and TME components, particularly CAFs, macrophages, and T cells. The TIDE algorithm provided evidence that T-cell clearance and dysfunction were more pronounced in bladder cancers characterized by high CXCL12 expression and high iCAFs scores, contributing to inferior responsiveness to ICB therapy. Patients who expressed high CXCL12 levels and had high iCAFs scores were likely to have less frequent FGFR3 mutation and a stromal-rich molecular subtype. Immunohistochemistry revealed that the close association of CXCL12 with iCAFs in bladder cancer potentially influenced the intratumoral infiltration of CD8 + T cells. CXCL12 expression in MIBC was increased significantly in NMIBC, which supports the bioinformatics analysis results. The IMvigor210 cohort confirmed the iCAFs score to be significantly associated with the responsiveness to immune checkpoint blockade therapy. Conclusions This work explores carcinogenesis and cancer-promoting roles of CXCL12 in bladder cancer. As a specific marker gene of iCAFs, CXCL12 potentially promotes bladder cancer progression by regulating the tumor microenvironment. Further exploration of the association between CXCL12 and iCAFs may unravel potential therapeutic targets for bladder precision medicine and improve the responsiveness of immune checkpoint blockade therapy.


Toxins ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 914-933 ◽  
Author(s):  
Lucia Gelao ◽  
Carmen Criscitiello ◽  
Angela Esposito ◽  
Aron Goldhirsch ◽  
Giuseppe Curigliano

2018 ◽  
Vol 130 ◽  
pp. 108-120 ◽  
Author(s):  
Takeo Fujii ◽  
Aung Naing ◽  
Christian Rolfo ◽  
Joud Hajjar

Sign in / Sign up

Export Citation Format

Share Document