scholarly journals NONLINEAR DIFFERENTIAL INCLUSIONS OF SEMIMONOTONE AND CONDENSING TYPE IN HILBERT SPACES

2015 ◽  
Vol 52 (2) ◽  
pp. 421-438
Author(s):  
Hossein Abedi ◽  
Ruhollah Jahanipur
2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Alka Chadha ◽  
Rathinasamy Sakthivel ◽  
Swaroop Nandan Bora

In this paper, we study the approximate controllability of nonlocal fractional differential inclusions involving the Caputo fractional derivative of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions when the multivalued maps are convex. Precisely, the results are developed under the assumption that the corresponding linear system is approximately controllable.  


1997 ◽  
Vol 29 (1) ◽  
pp. 65-76
Author(s):  
Bui An Ton

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 750
Author(s):  
Tzanko Donchev ◽  
Shamas Bilal ◽  
Ovidiu Cârjă ◽  
Nasir Javaid ◽  
Alina I. Lazu

We develop a new concept of a solution, called the limit solution, to fully nonlinear differential inclusions in Banach spaces. That enables us to study such kind of inclusions under relatively weak conditions. Namely we prove the existence of this type of solutions and some qualitative properties, replacing the commonly used compact or Lipschitz conditions by a dissipative one, i.e., one-sided Perron condition. Under some natural assumptions we prove that the set of limit solutions is the closure of the set of integral solutions.


Author(s):  
Zuomao Yan ◽  
Hongwu Zhang

We study the approximate controllability of a class of fractional partial neutral integro-differential inclusions with infinite delay in Hilbert spaces. By using the analytic α-resolvent operator and the fixed point theorem for discontinuous multivalued operators due to Dhage, a new set of necessary and sufficient conditions are formulated which guarantee the approximate controllability of the nonlinear fractional system. The results are obtained under the assumption that the associated linear system is approximately controllable. An example is provided to illustrate the main results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Messaoud Bounkhel

In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is,ẋ(t)∈F(t,x(t))a.e. onI,x(t)∈S,∀t∈I,x(0)=x0∈S, (*), whereSis a closed subset in a Banach space𝕏,I=[0,T],(T>0),F:I×S→𝕏, is an upper semicontinuous set-valued mapping with convex values satisfyingF(t,x)⊂c(t)x+xp𝒦,∀(t,x)∈I×S, wherep∈ℝ, withp≠1, andc∈C([0,T],ℝ+). The existence of solutions for nonconvex sweeping processes with perturbations with nonlinear growth is also proved in separable Hilbert spaces.


2014 ◽  
Vol 22 (3) ◽  
pp. 639-656 ◽  
Author(s):  
I. Benedetti ◽  
N. V. Loi ◽  
L. Malaguti

Sign in / Sign up

Export Citation Format

Share Document