set valued mapping
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 32)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol Volume 3 (Original research articles) ◽  
Author(s):  
Gerd Wachsmuth

We consider a generalized equation governed by a strongly monotone and Lipschitz single-valued mapping and a maximally monotone set-valued mapping in a Hilbert space. We are interested in the sensitivity of solutions w.r.t. perturbations of both mappings. We demonstrate that the directional differentiability of the solution map can be verified by using the directional differentiability of the single-valued operator and of the resolvent of the set-valued mapping. The result is applied to quasi-generalized equations in which we have an additional dependence of the solution within the set-valued part of the equation.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Valeria Marraffa ◽  
Bianca Satco

We are studying first order differential inclusions with periodic boundary conditions where the Stieltjes derivative with respect to a left-continuous non-decreasing function replaces the classical derivative. The involved set-valued mapping is not assumed to have compact and convex values, nor to be upper semicontinuous concerning the second argument everywhere, as in other related works. A condition involving the contingent derivative relative to the non-decreasing function (recently introduced and applied to initial value problems by R.L. Pouso, I.M. Marquez Albes, and J. Rodriguez-Lopez) is imposed on the set where the upper semicontinuity and the assumption to have compact convex values fail. Based on previously obtained results for periodic problems in the single-valued cases, the existence of solutions is proven. It is also pointed out that the solution set is compact in the uniform convergence topology. In particular, the existence results are obtained for periodic impulsive differential inclusions (with multivalued impulsive maps and finite or possibly countable impulsive moments) without upper semicontinuity assumptions on the right-hand side, and also the existence of solutions is derived for dynamic inclusions on time scales with periodic boundary conditions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Tawfeek ◽  
Nashat Faried ◽  
H. A. El-Sharkawy

AbstractLet E be a Banach space with dual space $E^{*}$ E ∗ , and let K be a nonempty, closed, and convex subset of E. We generalize the concept of generalized projection operator “$\Pi _{K}: E \rightarrow K$ Π K : E → K ” from uniformly convex uniformly smooth Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties. We show the relation between J-orthogonality and generalized projection operator $\Pi _{K}$ Π K and give examples to clarify this relation. We introduce a comparison between the metric projection operator $P_{K}$ P K and the generalized projection operator $\Pi _{K}$ Π K in uniformly convex uniformly smooth complete countably normed spaces, and we give an example explaining how to evaluate the metric projection $P_{K}$ P K and the generalized projection $\Pi _{K}$ Π K in some cases of countably normed spaces, and this example illustrates that the generalized projection operator $\Pi _{K}$ Π K in general is a set-valued mapping. Also we generalize the generalized projection operator “$\pi _{K}: E^{*} \rightarrow K$ π K : E ∗ → K ” from reflexive Banach spaces to uniformly convex uniformly smooth countably normed spaces and study its properties in these spaces.


2021 ◽  
Vol 26 (5) ◽  
pp. 821-841
Author(s):  
Maryam Ramezani ◽  
Hamid Baghani ◽  
Juan J. Nieto

We present a novel generalization of the Hyers–Ulam–Rassias stability definition to study a generalized cubic set-valued mapping in normed spaces. In order to achieve our goals, we have applied a brand new fixed point alternative. Meanwhile, we have obtained a practicable example demonstrating the stability of a cubic mapping that is not defined as stable according to the previously applied methods and procedures.


Author(s):  
Hélène Frankowska ◽  
Nobusumi Sagara

We investigate the value function of an infinite horizon variational problem in the infinite-dimensional setting. First, we provide an upper estimate of its Dini–Hadamard subdifferential in terms of the Clarke subdifferential of the Lipschitz continuous integrand and the Clarke normal cone to the graph of the set-valued mapping describing dynamics. Second, we derive a necessary condition for optimality in the form of an adjoint inclusion that grasps a connection between the Euler–Lagrange condition and the maximum principle. The main results are applied to the derivation of the necessary optimality condition of the spatial Ramsey growth model.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-22
Author(s):  
Doria Affane ◽  
Loubna Boulkemh

Abstract In this paper, we consider a perturbed sweeping process for a class of subsmooth moving sets. The perturbation is general and takes the form of a sum of a single-valued mapping and a set-valued mapping. In the first result, we study some topological proprieties of the attainable set, the set-valued mapping considered here is upper semi-continuous with convex values. In the second result, we treat the autonomous problem under assumptions that do not require the convexity of the values and that weaken the assumption on the upper semi-continuity. Then, we deduce a solution of the time optimality problem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xicai Deng ◽  
Wei Zhao

AbstractIn this paper, we deal with the sensitivity analysis in vector equilibrium problems by using the S-derivative of a set-valued mapping. We first investigate the S-derivative on a kind of set-valued gap function for the vector equilibrium problems. Based on these results, S-derivative estimations on a perturbed mapping for the parametric vector equilibrium problem are given. Moreover, we provide some examples to illustrate the obtained results. Finally, we derive the S-derivative estimations of a solutions mapping of the parametric vector equilibrium problems via S-derivative estimations of a kind of the parametric variational system.


2021 ◽  
Vol 20 ◽  
pp. 312-318
Author(s):  
Duangkamon Kitkuan ◽  
Pakeeta Sukprasert

In this article, we present a (α, F)-set-valued mapping in setting b-metric space by characterizing the weak contraction condition with the C function and the α-set-valued function of type S. There are examples and implementations accessible that illustrate the validity of our findings.


Author(s):  
Sevilay Demir Sağlam

This paper deals with the necessary and sufficient conditions of optimality for the Mayer problem of second-order discrete and discrete-approximate inclusions. The main problem is to establish the approximation of second-order viability problems for differential inclusions with endpoint constraints. Thus, as a supplementary problem, we study the discrete approximation problem and give the optimality conditions incorporating the Euler-Lagrange inclusions and distinctive transversality conditions. Locally adjoint mappings (LAM) and equivalence theorems are the fundamental principles of achieving these optimal conditions, one of the most characteristic properties of such approaches with second-order differential inclusions that are specific to the existence of LAMs equivalence relations. Also, a discrete linear model and an example of second-order discrete inclusions in which a set-valued mapping is described by a nonlinear inequality show the applications of these results.


Sign in / Sign up

Export Citation Format

Share Document