scholarly journals Oscillation of Clock and Clock Controlled Genes Induced by Serum Shock in Human Breast Epithelial and Breast Cancer Cells: Regulation by Melatonin

2012 ◽  
Vol 6 ◽  
pp. BCBCR.S9673 ◽  
Author(s):  
S. Xiang ◽  
L. Mao ◽  
T. Duplessis ◽  
L. Yuan ◽  
R. Dauchy ◽  
...  

This study investigates differences in expression of clock and clock-controlled genes (CCGs) between human breast epithelial and breast cancer cells and breast tumor xenografts in circadian intact rats and examines if the pineal hormone melatonin influences clock gene and CCG expression. Oscillation of clock gene expression was not observed under standard growth conditions in vitro, however, serum shock (50% horse serum for 2 h) induced oscillation of clock gene and CCG expression in MCF-10A cells, which was repressed or disrupted in MCF-7 cells. Melatonin administration following serum shock differentially suppressed or induced clock gene (Bmal1 and Per2) and CCG expression in MCF10A and MCF-7 cells. These studies demonstrate the lack of rhythmic expression of clock genes and CCGs of cells in vitro and that transplantation of breast cancer cells as xenografts into circadian competent hosts re-establishes a circadian rhythm in the peripheral clock genes of tumor cells.

2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501
Author(s):  
Jiraporn Saekoo ◽  
Potchanapond Graidist ◽  
Wilairat Leeanansaksiri ◽  
Chavaboon Dechsukum ◽  
Arunporn Itharat

Dioscorealide B is a pharmacologically active compound from the rhizome of the Thai medicinal plant Dioscorea membranacea. Here, we demonstrated that in vitro treatment of dioscorealide B resulted in a cytotoxic effect on MCF-7 human breast cancer cells (IC50 = 2.82 μM). To determine whether this compound induces apoptosis in MCF-7, the Annexin V assay was performed. The data showed that the number of apoptotic cells were increased 7–12 folds over that of the control cells after treatment with various concentrations of dioscorealide B (3, 6 and 12 μM) for 24 hours. Dioscorealide B-induced apoptosis was associated with modulation of the multidomain Bcl-2 family members Bax, Bak and Bcl-2. After treatment with 3 μM dioscorealide B, acceleration of the level of proapoptotic proteins Bax and Bak were observed at 6 hours and 12 hours, respectively, while the decrease in the expression of antiapoptotic protein Bcl-2 was observed 3 hours after the treatment. These effects of dioscorealide B might result in the activation of caspase-8, -9 and -7, which lead to apoptosis in MCF-7 cells. Taken together, the results of this study provide evidence that dioscorealide B possesses an antitumor property against human breast cancer cells and thus provide the molecular basis for the further development of dioscorealide B as a novel chemotherapeutic agent for breast cancer treatment.


2017 ◽  
Vol 17 (2) ◽  
pp. 542-550 ◽  
Author(s):  
Nariman K. Badr El-Din ◽  
Ashraf Z. Mahmoud ◽  
Tahia Ali Hassan ◽  
Mamdooh Ghoneum

Our earlier studies have demonstrated that phagocytosis of baker’s yeast ( Saccharomyces cerevisiae) induces apoptosis in different cancer cell lines in vitro and in vivo. This study aimed to examine how baker’s yeast sensitizes murine and human breast cancer cells (BCC) to paclitaxel in vitro. This sensitizing effect makes lower concentrations of chemotherapy more effective at killing cancer cells, thereby enhancing the capacity of treatment. Three BCC lines were used: the metastatic murine 4T1 line, the murine Ehrlich ascites carcinoma (EAC) line, and the human breast cancer MCF-7 line. Cells were cultured with different concentrations of paclitaxel in the presence or absence of baker’s yeast. Cell survival and the IC50 values were determined by MTT assay and trypan blue exclusion method. Percent of DNA damage, apoptosis, and cell proliferation were examined by flow cytometry. Yeast alone and paclitaxel alone significantly decreased 4T1 cell viability postculture (24 and 48 hours), caused DNA damage, increased apoptosis, and suppressed cell proliferation. Baker’s yeast in the presence of paclitaxel increased the sensitivity of 4T1 cells to chemotherapy and caused effects that were greater than either treatment alone. The chemosensitizing effect of yeast was also observed with murine EAC cells and human MCF-7 cells, but to a lesser extent. These data suggest that dietary baker’s yeast is an effective chemosensitizer and can enhance the apoptotic capacity of paclitaxel against breast cancer cells in vitro. Baker’s yeast may represent a novel adjuvant for chemotherapy treatment.


Sign in / Sign up

Export Citation Format

Share Document