sodium cholate
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 56)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Soad A. Mohamed ◽  
Mohamed A. Abdelgawad ◽  
Rania Alaaeldin ◽  
Zeinab Fathalla ◽  
Hossam Moharram ◽  
...  

Keratitis is a global health issue that claims the eye sight of millions of people every year. Dry eye, contact lens wearing and refractive surgeries are among the most common causes. The resistance rate among fluoroquinolone antibiotics is >30%. This study aims at formulating a newly synthesized ciprofloxacin derivative (2b) niosomes and Solulan C24-, sodium cholate- and deoxycholate-modified niosomes. The prepared niosomal dispersions were characterized macroscopically and microscopically (SEM) and by percentage entrapment efficiency, in vitro release and drug release kinetics. While the inclusion of Solulan C24 produced something discoidal-shaped with a larger diameter, both cholate and deoxycholate were unsuccessful in forming niosomes dispersions. Conventional niosomes and discomes (Solulan C24-modified niosomes) were selected for further investigation. A corneal ulcer model inoculated with colonies of Pseudomonas aeruginosa in rabbits was developed to evaluate the effectiveness of keratitis treatment of the 2b-loaded niosomes and 2b-loaded discomes compared with Ciprocin® (ciprofloxacin) eye drops and control 2b suspension. The histological documentation and assessment of gene expression of the inflammatory markers (IL-6, IL1B, TNFα and NF-κB) indicated that both 2b niosomes and discomes were superior treatments and can be formulated at physiological pH 7.4 compatible with the ocular surface, compared to both 2b suspension and Ciprocin® eye drops.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7279
Author(s):  
Łukasz Krupa ◽  
Robert Staroń ◽  
Dorota Dulko ◽  
Natalia Łozińska ◽  
Alan R. Mackie ◽  
...  

Determination of the cause of a biliary obstruction is often inconclusive from serum analysis alone without further clinical tests. To this end, serum markers as well as the composition of bile of 74 patients with biliary obstructions were determined to improve the diagnoses. The samples were collected from the patients during an endoscopic retrograde cholangiopancreatography (ERCP). The concentration of eight bile salts, specifically sodium cholate, sodium glycocholate, sodium taurocholate, sodium glycodeoxycholate, sodium chenodeoxycholate, sodium glycochenodeoxycholate, sodium taurodeoxycholate, and sodium taurochenodeoxycholate as well as bile cholesterol were determined by HPLC-MS. Serum alanine aminotransferase (ALT), aspartate transaminase (AST), and bilirubin were measured before the ERCP. The aim was to determine a diagnostic factor and gain insights into the influence of serum bilirubin as well as bile salts on diseases. Ratios of conjugated/unconjugated, primary/secondary, and taurine/glycine conjugated bile salts were determined to facilitate the comparison to literature data. Receiver operating characteristic (ROC) curves were determined, and the cut-off values were calculated by determining the point closest to (0,1). It was found that serum bilirubin was a good indicator of the type of biliary obstruction; it was able to differentiate between benign obstructions such as choledocholithiasis (at the concentration of >11 µmol/L) and malignant changes such as pancreatic neoplasms or cholangiocarcinoma (at the concentration of >59 µmol/L). In addition, it was shown that conjugated/unconjugated bile salts confirm the presence of an obstruction. With lower levels of conjugated/unconjugated bile salts the possibility for inflammation and, thus, neoplasms increase.


Small Methods ◽  
2021 ◽  
pp. 2100943
Author(s):  
Myeongsu Na ◽  
Kitae Kim ◽  
Kyoungjoon Oh ◽  
Hyung Jin Choi ◽  
ChangMan Ha ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ma. F. Peralta ◽  
S. N. Mendieta ◽  
I. R. Scolari ◽  
G. E. Granero ◽  
M. E. Crivello

AbstractCarbamazepine (CBZ) was incorporated into layered double hydroxides (LDH) to be used as a controlled drug system in solid tumors. CBZ has a formal charge of zero, so its incorporation in the anionic clay implies a challenge. Aiming to overcome this problem, CBZ was loaded into LDH with sodium cholate (SC), a surfactant with negative charge and, for comparison, without SC by the reconstruction method. Surprisingly, it was found that both resultant nanocomposites had similar CBZ encapsulation efficiency, around 75%, and the LDH-CBZ system without SC showed a better performance in relation to the release kinetics of CBZ in simulated body fluid (pH 7.4) and acetate buffer simulating the cellular cytoplasm (pH 4.8) than the system with SC. The CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X-ray patterns, it can be arranged in the LDH-CBZ system as a monolayer with the long axis parallel to the LDH layers. Fourier transform infrared spectroscopy and solid state NMR measurements confirmed the presence of the drug, and thermogravimetric analyses showed an enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as a controlled drug system to a large number of nonionic drugs, without the addition of other components.


2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Annalisa Scroccarello ◽  
Flavio Della Pelle ◽  
Qurat Ul Ain Bukhari ◽  
Filippo Silveri ◽  
Daniele Zappi ◽  
...  

Carbonaceous-based nanomaterials (C-NMs) are the pillar of myriad sensing and catalytic electrochemical applications. In this field, the search for environmentally sustainable C-NMs from renewable sources became a duty in the development of nano-sensors. Herein, water-soluble carbon nanofibers (CF) were produced from eucalyptus scraps-based biochar (BH) through an ultrasound treatment, assisted by sodium cholate used as a stabilizing agent. Noteworthy, thanks to the use of the bio-stabilizing agent, the nanofibers were dispersed in water avoiding the use of organic solvents. The BH-CF was investigated as sensing material onto commercial screen-printed electrodes via drop-casting (BH-SPE) and as thin-film fully integrated into a lab-made flexible electrode. The thin film was produced via BH-CF vacuum filtration followed by the film transferring to a thermo-adhesive plastic substrate through thermal lamination. This approach gave rise to a conductive BH-CF film (BH-Film) easily embodied in a lab-made electrode produced with office-grade instrumentation (i.e., craft-cutter machine, thermal laminator) and materials (i.e., laminating pouches, stencil). The BH-CF amount was optimized and the resulting film morphologically characterized, then, the electrochemical performances were studied. The BH-CF electrochemical features were investigated towards a broad range of analytes containing phenol moieties, discrimination between orto- and mono-phenolic structures were achieved for all the studied compounds. As proof of applicability, the BH-CF-based sensors were challenged for simultaneous determination of mono-phenols and ortho-diphenols in olive oil extracts. LODs ≤ 0.5 μM and ≤ 3.8 μM were obtained for hydroxytyrosol (o-diphenol reference standard) and Tyrosol (m-phenols reference standard), respectively. Moreover, a high inter-sensors precision (RSD calibration-slopes ≤ 7%, n = 3) and quantitative recoveries in sample analysis (recoveries 91–111%, RSD ≤ 6%) were obtained. Here, a solvent-free strategy to obtain water-soluble BH-CF was proposed, and their usability to sensor fabrication and modification proved. This work demonstrated as cost-effective and sustainable renewable sources, rationally used, can lead to obtain useful nanomaterials.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1579
Author(s):  
Rabia Ramzan ◽  
Jörg Napiwotzki ◽  
Petra Weber ◽  
Bernhard Kadenbach ◽  
Sebastian Vogt

Cytochrome c oxidase (CytOx), the oxygen-accepting and rate-limiting enzyme of mitochondrial respiration, binds with 10 molecules of ADP, 7 of which are exchanged by ATP at high ATP/ADP-ratios. These bound ATP and ADP can be exchanged by cholate, which is generally used for the purification of CytOx. Many crystal structures of isolated CytOx were performed with the enzyme isolated from mitochondria using sodium cholate as a detergent. Cholate, however, dimerizes the enzyme isolated in non-ionic detergents and induces a structural change as evident from a spectral change. Consequently, it turns off the “allosteric ATP-inhibition of CytOx”, which is reversibly switched on under relaxed conditions via cAMP-dependent phosphorylation and keeps the membrane potential and ROS formation in mitochondria at low levels. This cholate effect gives an insight into the structural-functional relationship of the enzyme with respect to ATP inhibition and its role in mitochondrial respiration and energy production.


Sign in / Sign up

Export Citation Format

Share Document