Nitrogen and phosphorus effects on water use efficiency of spring wheat grown in a semi-arid region of the Canadian prairies

2012 ◽  
Vol 92 (4) ◽  
pp. 573-587 ◽  
Author(s):  
R. Kröbel ◽  
C. A. Campbell ◽  
R. P. Zentner ◽  
R. Lemke ◽  
H. Steppuhn ◽  
...  

Kröbel, R., Campbell, C. A., Zentner, R. P., Lemke, R., Steppuhn, H., Desjardins, R. L. and De Jong, R. 2012. Nitrogen and phosphorus effects on water use efficiency of spring wheat grown in a semi-arid region of the Canadian prairies. Can. J. Soil Sci. 92: 573–587. Water use efficiency (WUE) has often been analyzed for semiarid environments, but fallow-containing cropping systems were assessed inappropriately. Further, these short-term studies are unlikely to correctly assess weather variability impacts in such environments. We assessed the impact of fertilizer N and P on water use efficiency (WUE) and precipitation use efficiency (PUE) of spring wheat (Triticum aestivum L.) from a 39-yr long-term crop rotation study in semi-arid southwestern Saskatchewan. In the rotation experiment, continuous wheat (Cont W) with N+P or P fertilizer only, and fallow-wheat-wheat (F-W-W) with N+P, P only, or N only were studied. We calculated WUE using: (i) Yield (Y)/[water use (WU)/potential water use (PET)]; (ii) Y/WU; (iii) Y/WU with a fallow phase element added; and (iv) Y/harvest-to-harvest precipitation (PUE). The WUEs in the rotation experiment were generally greater for treatments with N+P fertilizer, and greatest after an increase of N application coupled with favourable soil water conditions in the final decades of this study. In cases (i) and (ii), WUE for F-W-W was greater than for the Cont W-treatment. In case (iii), the WUEs were 5.7, 4.5, 3.9, 3.6, and 3.6 kg ha−1 mm−1 water for Cont W (N+P), Cont W (P), F-W-W (N+P), F-W-W (P), and F-W-W (N), respectively. For PUE [case (iv)] the values were 4.0, 3.1, 3.4, 3.0, and 2.9, respectively. We concluded that case (ii) was most appropriate for continuous cropping and case (iii) for systems including fallow, while case (iv) was usable in general.

2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2019 ◽  
Vol 666 ◽  
pp. 849-857 ◽  
Author(s):  
Amar Razzaq ◽  
Ping Qing ◽  
Muhammad Asad ur Rehman Naseer ◽  
Muhammad Abid ◽  
Mumtaz Anwar ◽  
...  

Author(s):  
Rômulo M. O. de Freitas ◽  
Jeferson L. D. Dombroski ◽  
Francisco C. L. de Freitas ◽  
Narjara W. Nogueira ◽  
Tiago S. Leite ◽  
...  

ABSTRACT The resilience of crops to drought depends heavily on the cultural practices adopted, which can have a direct effect on water use efficiency. The aim of this study was to assess the influence of irrigation intervals on the growth, water consumption and water use efficiency of cowpea crops (cv. BRS Guariba) under conventional and no-tillage systems. The experiment was carried out in the semi-arid region of Rio Grande do Norte, Brazil, using a split-plot in a randomised complete block design, with four replications. Treatments consisted of two cultivation systems in the whole plots (conventional and no-tillage) and six irrigation intervals in the subplots (2, 6, 10, 14, 18 and 22 days) which were applied at full bloom. The biomass of the different parts of the plant, leaf area and leaf area index were assessed at 64 days after sowing (DAS) and grain yield, water consumption and water use efficiency at 70 DAS. No-tillage is a promising cultivation technique for cowpea crops, promoting higher grain yield and water use efficiency under semi-arid conditions. This system allows cowpea cultivation with irrigation intervals of 10 or 14 days, with no or small reduction in yield, respectively.


2020 ◽  
Vol 8 (4) ◽  
pp. 629
Author(s):  
Janiquelle Da Silva Rabelo ◽  
Marcelo De Almeida Guimarães ◽  
Valsergio Barros Da Silva ◽  
Raimundo Nonato Távora Costa ◽  
Hozano De Souza Lemos Neto ◽  
...  

This research addresses irrigation strategies for saving water, including the use of irrigation depths of 50, 75, 100, 125 and 150% of the crop evapotranspiration (ETc) and a ground cover of carnauba straw, in evaluating the response of the cherry tomato (Solanum lycopersicum var cerasiforme L) submitted to different levels of water availability in soil with and without ground cover, in the semi-arid region of northeastern Brazil. The physiological components showed higher values under ground cover and when submitted to 100% ETc. The greatest number of total and commercial fruit was obtained when the soil was covered, and irrigated with depths of 75 and 100%. Carnauba straw with irrigation depths of 100 and 125% resulted in the greatest fresh fruit weight. The highest values for fruit diameter and length were achieved in the soil under cover. Maximum productivity, 11,404.20 kg ha-1, was obtained at 107.5%, while for the soil with no ground cover, maximum productivity was 7,778.86 kg ha-1, obtained with an irrigation depth of 140%. Based on the results, soil productivity is possible without a cover of carnauba straw, at an irrigation depth of 50.5%, which can generate savings of 3400 m³ water-cycle-1 ha-1. In addition, water use efficiency in the cherry tomato was 3.06 kg m-3 and 1.95 kg m-3, with and without ground cover respectively. It can be concluded that the use of carnauba straw makes it possible to reduce water consumption in the 'red' cherry tomato under conditions of water scarcity.


Sign in / Sign up

Export Citation Format

Share Document