Note Upon The Generalized Cayleyan Operator

1949 ◽  
Vol 1 (1) ◽  
pp. 48-56 ◽  
Author(s):  
H. W. Turnbull

The following note which deals with the effect of a certain determinantal operator when it acts upon a product of determinants was suggested by the original proof which Dr. Alfred Young gave of the propertysubsisting between the positive P and the negative N substitutional operators, θ being a positive integer. This result which establishes the idempotency of the expression θ−1NP within an appropriate algebra is fundamental in the Quantitative Substitutional Analysis that Young developed.

1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


1953 ◽  
Vol 1 (3) ◽  
pp. 119-120 ◽  
Author(s):  
Fouad M. Ragab

§ 1. Introductory. The formula to be established iswhere m is a positive integer,and the constants are such that the integral converges.


1963 ◽  
Vol 6 (2) ◽  
pp. 70-74 ◽  
Author(s):  
F. M. Ragab

It is proposed to establish the two following integrals.where n is a positive integer, x is real and positive, μi and ν are complex, and Δ (n; a) represents the set of parameterswhere n is a positive integer and x is real and positive.


1964 ◽  
Vol 16 ◽  
pp. 94-97 ◽  
Author(s):  
David G. Cantor

Let n be a positive integer and put N = {1, 2, . . . , n}. A collection {S1, S2, . . . , St} of subsets of N is called determining if, for any T ⊂ N, the cardinalities of the t intersections T ∩ Sj determine T uniquely. Let €1, €2, . . . , €n be n variables with range {0, 1}. It is clear that a determining collection {Sj) has the property that the sums


1966 ◽  
Vol 18 ◽  
pp. 621-628 ◽  
Author(s):  
I. Danicic

The object of this paper is to prove the following:Theorem. Suppose that λ, μ are real non-zero numbers, not both negative, λ is irrational, and k is a positive integer. Then there exist infinitely many primes p and pairs of primes p1, p2 such thatIn particular [λp1 + μp2] represents infinitely many primes.Here [x] denotes the greatest integer not exceeding x.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


1981 ◽  
Vol 33 (3) ◽  
pp. 606-617 ◽  
Author(s):  
D. J. Leeming ◽  
R. A. Macleod

We define infinitely many sequences of integers one sequence for each positive integer k ≦ 2 by(1.1)where are the k-th roots of unity and (E(k))n is replaced by En(k) after multiplying out. An immediate consequence of (1.1) is(1.2)Therefore, we are interested in numbers of the form Esk(k) (s = 0, 1, 2, …; k = 2, 3, …).Some special cases have been considered in the literature. For k = 2, we obtain the Euler numbers (see e.g. [8]). The case k = 3 is considered briefly by D. H. Lehmer [7], and the case k = 4 by Leeming [6] and Carlitz ([1]and [2]).


1969 ◽  
Vol 12 (5) ◽  
pp. 545-565 ◽  
Author(s):  
Kenneth S. Williams

Let p denote a prime and n a positive integer ≥ 2. Let Nn(p) denote the number of polynomials xn + x + a, a = 1, 2,…, p-l, which are irreducible (mod p). Chowla [5] has made the following two conjectures:Conjecture 1. There is a prime p0(n), depending only on n, such that for all primes p ≥ p0(n)


Sign in / Sign up

Export Citation Format

Share Document