Some Properties of Generalized Euler Numbers

1981 ◽  
Vol 33 (3) ◽  
pp. 606-617 ◽  
Author(s):  
D. J. Leeming ◽  
R. A. Macleod

We define infinitely many sequences of integers one sequence for each positive integer k ≦ 2 by(1.1)where are the k-th roots of unity and (E(k))n is replaced by En(k) after multiplying out. An immediate consequence of (1.1) is(1.2)Therefore, we are interested in numbers of the form Esk(k) (s = 0, 1, 2, …; k = 2, 3, …).Some special cases have been considered in the literature. For k = 2, we obtain the Euler numbers (see e.g. [8]). The case k = 3 is considered briefly by D. H. Lehmer [7], and the case k = 4 by Leeming [6] and Carlitz ([1]and [2]).

1983 ◽  
Vol 35 (3) ◽  
pp. 526-546 ◽  
Author(s):  
D. J. Leeming ◽  
R. A. Macleod

We define (as in [7]) integer sequences one for each positive integer k ≧ 2, by1.1where are the kth roots of unity and (E(k))n is replaced by after multiplying out. We note that (1.1) implies , n ≠ 0 (mod k).In [7], we considered some special properties of these number sequences, proved several congruences and conjectured several others. This paper is a continuation of the work presented in [7].In Section 2 we demonstrate the asymptotic rate of growth of the numbers by showing thatIn Section 3 we present a large number of congruences (modulo 2048), some of which are proved or can be proved by the techniques presented herein, and other congruences which appear to be true on the basis of numerical evidence.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


1953 ◽  
Vol 1 (3) ◽  
pp. 119-120 ◽  
Author(s):  
Fouad M. Ragab

§ 1. Introductory. The formula to be established iswhere m is a positive integer,and the constants are such that the integral converges.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


1963 ◽  
Vol 6 (2) ◽  
pp. 70-74 ◽  
Author(s):  
F. M. Ragab

It is proposed to establish the two following integrals.where n is a positive integer, x is real and positive, μi and ν are complex, and Δ (n; a) represents the set of parameterswhere n is a positive integer and x is real and positive.


1999 ◽  
Vol 42 (2) ◽  
pp. 349-374 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Martin Bohner ◽  
Patricia J. Y. Wong

We consider the following boundary value problemwhere λ > 0 and 1 ≤ p ≤ n – 1 is fixed. The values of λ are characterized so that the boundary value problem has a positive solution. Further, for the case λ = 1 we offer criteria for the existence of two positive solutions of the boundary value problem. Upper and lower bounds for these positive solutions are also established for special cases. Several examples are included to dwell upon the importance of the results obtained.


Author(s):  
S. M. Riehl

We consider the Dirac equation given by with initial condition y1 (0) cos α + y2(0) sin α = 0, α ε [0; π ) and suppose the equation is in the limit-point case at infinity. Using to denote the derivative of the corresponding spectral function, a formula for is given when is known and positive for three distinct values of α. In general, if is known and positive for only two distinct values of α, then is shown to be one of two possibilities. However, in special cases of the Dirac equation, can be uniquely determined given for only two values of α.


Author(s):  
Ben Brubaker ◽  
Daniel Bump ◽  
Solomon Friedberg

This chapter describes Type A Weyl group multiple Dirichlet series. It begins by defining the basic shape of the class of Weyl group multiple Dirichlet series. To do so, the following parameters are introduced: Φ‎, a reduced root system; n, a positive integer; F, an algebraic number field containing the group μ‎₂ₙ of 2n-th roots of unity; S, a finite set of places of F containing all the archimedean places, all places ramified over a ℚ; and an r-tuple of nonzero S-integers. In the language of representation theory, the weight of the basis vector corresponding to the Gelfand-Tsetlin pattern can be read from differences of consecutive row sums in the pattern. The chapter considers in this case expressions of the weight of the pattern up to an affine linear transformation.


Sign in / Sign up

Export Citation Format

Share Document