Semi-Prime Modules

1966 ◽  
Vol 18 ◽  
pp. 823-831 ◽  
Author(s):  
E. H. Feller ◽  
E. W. Swokowski

Properties and characterizations for prime and semiprime rings have been provided by A. W. Goldie (2, 3). In a previous paper (1), the authors used the results of (2) to characterize prime and uniform prime modules. It is the aim of the present paper to generalize Goldie's work on semi-prime rings (3) to modules. In this setting certain new properties will appear.Notationally, in the work to follow, the symbol R always denotes a ring and all R-modules will be right R-modules.In the theory of rings an ideal C is said to be prime if and only if whenever AB ⊆ C for ideals A and B, then either A ⊆ C or B ⊆ C. A ring is prime if the zero ideal is prime.

2021 ◽  
Vol 39 (4) ◽  
pp. 65-72
Author(s):  
Faiza Shujat

The purpose of the present paper is to prove some results concerning symmetric generalized biderivations on prime and semiprime rings which partially extend some results of Vukman \cite {V}. Infact we prove that: let $R$ be a prime ring of characteristic not two and $I$ be a nonzro ideal of $R$. If $\Delta$ is a symmetric generalized biderivation on $R$ with associated biderivation $D$ such that $[\Delta(x,x), \Delta(y,y)]=0$ for all $x,y \in I$, then one of the following conditions hold\\ \begin{enumerate} \item $R$ is commutative. \item $\Delta$ acts as a left bimultiplier on $R$. \end{enumerate}


2006 ◽  
Vol 13 (03) ◽  
pp. 371-380 ◽  
Author(s):  
Nurcan Argaç

Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.


Author(s):  
H. E. Bell ◽  
M. N. Daif

A mapfof the ringRinto itself is of period 2 iff2x=xfor allx∈R; involutions are much studied examples. We present some commutativity results for semiprime and prime rings with involution, and we study the existence of derivations and generalized derivations of period 2 on prime and semiprime rings.


2017 ◽  
Vol 28 (1) ◽  
pp. 112
Author(s):  
Auday H. Mahmood ◽  
Dheaa K. Hussain K. Hussein

The propose of this paper is to present some results concerning the symmetric generalized Biderivations when their traces satisfies some certain conditions on an ideal of prime and semiprime rings. We show that a semiprime ring R must have a nontrivial central ideal if it admits appropriate traces of symmetric generalized Biderivations, under similar hypothesis we prove commutativity in prime rings.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950079
Author(s):  
Ahmad Al Khalaf ◽  
Iman Taha ◽  
Orest D. Artemovych ◽  
Abdullah Aljouiiee

Earlier D. A. Jordan, C. R. Jordan and D. S. Passman have investigated the properties of Lie rings Der [Formula: see text] of derivations in a commutative differentially prime rings [Formula: see text]. We study Lie rings Der [Formula: see text] in the non-commutative case and prove that if [Formula: see text] is a [Formula: see text]-torsion-free [Formula: see text]-semiprime ring, then [Formula: see text] is a semiprime Lie ring or [Formula: see text] is a commutative ring.


2016 ◽  
Vol 47 (1) ◽  
pp. 111-124 ◽  
Author(s):  
Basudeb Dhara ◽  
Nurcan Argaç ◽  
Krishna Gopal Pradhan

Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.


Sign in / Sign up

Export Citation Format

Share Document