Linearization of a Contractive Homeomorphism

1968 ◽  
Vol 20 ◽  
pp. 1387-1390
Author(s):  
Ludvik Janos

Let X be a topological space and ϕ: X ⟶ X a continuous self-mapping of X. We say that ϕ is linearized in L by Φ if there exists a topological embedding μ: X ⟶ L of the space X into the linear topological vector space L such that for all x ϵ X, μ (ϕ (x)) = Φ (μ (x)), where ϕ is a continuous linear operator on L.

1977 ◽  
Vol 20 (4) ◽  
pp. 293-299 ◽  
Author(s):  
N. J. Kalton

Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on S separates the points of S. If X is a Banach space and T : X → F is a continuous linear operator, then T is quasi-convex if is quasi-convex, where U is the unit ball of X.


1982 ◽  
Vol 23 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Demetrios Koros

Altman [1] showed that Riesz-Schauder theory remains valid for a completely continuous linear operator on a locally convex Hausdorflf topological vector space over the complex field. In a later paper [2], he proved an analogue of the Aronszajn-Smith result; specifically, he showed that such an operator possesses a proper closed invariant subspace. The purpose of this paper is to show that Ringrose's theory of superdiagonal forms for compact linear operators [3] can be generalized to the case of a completely continuous linear operator on a locally convex Hausdorff topological vector space over the complex field. However, the proof given in [3] requires considerable modification.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


Author(s):  
LUIGI ACCARDI ◽  
UN CIG JI ◽  
KIMIAKI SAITÔ

In this paper, we give a relationship between the exotic Laplacians and the Lévy Laplacians in terms of the higher-order derivatives of white noise by introducing a bijective and continuous linear operator acting on white noise functionals. Moreover, we study a relationship between exotic Laplacians, acting on higher-order singular functionals, each other in terms of the constructed operator.


1987 ◽  
Vol 29 (2) ◽  
pp. 271-273 ◽  
Author(s):  
J. R. Holub

Talagrand has shown [4, p. 76] that there exists a continuous linear operator from L1[0, 1] to c0 which is not a Dunford-Pettis operator. In contrast to this result, Gretsky and Ostroy [2] have recently proved that every positive operator from L[0, 1] to c0 is a Dunford-Pettis operator, hence that every regular operator between these spaces (i.e. a difference of positive operators) is Dunford-Pettis.


2016 ◽  
Vol 5 ◽  
pp. 65-73
Author(s):  
Sunarsini ◽  
Sadjidon ◽  
Agus Nur Ahmad Syarifudin

2001 ◽  
Vol 14 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Anwar A. Al-Nayef

The spectrum σ(A) of a continuous linear operator A:E→E defined on a Banach space E, which is contracting with respect to the Hausdorff measure of noncompactness, is investigated.


1972 ◽  
Vol 7 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Joe Howard ◽  
Kenneth Melendez

A locally convex topological vector (LCTV) space E is said to have property V (Dieudonné property) if for every complete separated LCTV space F, every unconditionally converging (weakly completely continuous) operator T: E → F is wsakly compact. First, an investigation of the permanence of property V is given. The permanence of the Dieudonné is analogous. Relationships between property V and the Dieudonné property are then given.


1997 ◽  
Vol 20 (3) ◽  
pp. 585-588 ◽  
Author(s):  
Fernando Garibay Bonales ◽  
Rigoberto Vera Mendoza

There is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operatorTdefined on a complete topological vector space, locally convex. We also show an easy way to find a non-trivialT-invariant closed subspace in terms of Minkowski functional.


Sign in / Sign up

Export Citation Format

Share Document