scholarly journals A formula to calculate the spectral radius of a compact linear operator

1997 ◽  
Vol 20 (3) ◽  
pp. 585-588 ◽  
Author(s):  
Fernando Garibay Bonales ◽  
Rigoberto Vera Mendoza

There is a formula (Gelfand's formula) to find the spectral radius of a linear operator defined on a Banach space. That formula does not apply even in normed spaces which are not complete. In this paper we show a formula to find the spectral radius of any linear and compact operatorTdefined on a complete topological vector space, locally convex. We also show an easy way to find a non-trivialT-invariant closed subspace in terms of Minkowski functional.

1977 ◽  
Vol 20 (4) ◽  
pp. 293-299 ◽  
Author(s):  
N. J. Kalton

Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on S separates the points of S. If X is a Banach space and T : X → F is a continuous linear operator, then T is quasi-convex if is quasi-convex, where U is the unit ball of X.


1986 ◽  
Vol 28 (1) ◽  
pp. 95-112 ◽  
Author(s):  
B. Nagy

In the theory of spectral (and prespectral) operators in a Banach space or in a locally convex topological vector space the countable additivity (in some topology) of a resolution of the identity of the operator is a standing assumption. One might wonder why. Even if one cannot completely agree with the opinion of Diestel and Uhl ([6, p. 32]) stating that “countable additivity [of a set function] is often more of a hindrance than a help”, it might be interesting to study which portions of the theory of (pre)spectral operators and in which form extend to the more general situation described below.


1974 ◽  
Vol 76 (1) ◽  
pp. 145-152 ◽  
Author(s):  
J. H. Webb

Let E[τ] be a locally convex Hausdorif topological vector space, with a Schauder basis {xi, x′j wherefor each x ∈ E. The partial summation operator Sn, defined byis a linear operator on E, whose definition extends at once to a linear operator mapping (E′)* into E, where (E′)* is the algebraic dual of E′. The dual of Sn is the operator S′n, mapping E* into E′, defined byand 〈Snx, x′〉 = 〈x, S′nx′〉 for each x ∈ (E′)*. It is easy to see that S′nx′ → x′ with respect to the weak topology σ(E′, E) for each x′ ∈ E′.


1986 ◽  
Vol 38 (1) ◽  
pp. 65-86 ◽  
Author(s):  
N. J. Kalton

Let X be a quasi-Banach space whose dual X* separates the points of X. Then X* is a Banach space under the normFrom X we can construct the Banach envelope Xc of X by defining for x ∊ X, the normThen Xc is the completion of (X, ‖ ‖c). Alternatively ‖ ‖c is the Minkowski functional of the convex hull of the unit ball. Xc has the property that any bounded linear operator L:X → Z into a Banach space extends with preservation of norm to an operator .


1977 ◽  
Vol 20 (2) ◽  
pp. 271-272 ◽  
Author(s):  
J. O. Popoola ◽  
I. Tweddle

The purpose of this note is to prove a result which is known to hold for Fréchet spaces [1, Chapitre II, §5, Exercise 24]. M. M. Day [2, p. 37] attributes the Banach space case to H. Löwig, although the earliest version that we have been able to find is that given by G. W. Mackey in [7, Theorem 1-1]. Recently H. E. Lacey has given an elegant proof for Banach spaces [5]. It is perhaps interesting to note that the non-locally convex case can be deduced from these known results which are established by duality arguments.


1982 ◽  
Vol 23 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Demetrios Koros

Altman [1] showed that Riesz-Schauder theory remains valid for a completely continuous linear operator on a locally convex Hausdorflf topological vector space over the complex field. In a later paper [2], he proved an analogue of the Aronszajn-Smith result; specifically, he showed that such an operator possesses a proper closed invariant subspace. The purpose of this paper is to show that Ringrose's theory of superdiagonal forms for compact linear operators [3] can be generalized to the case of a completely continuous linear operator on a locally convex Hausdorff topological vector space over the complex field. However, the proof given in [3] requires considerable modification.


1970 ◽  
Vol 17 (2) ◽  
pp. 121-125 ◽  
Author(s):  
C. W. McArthur

It is known (13, p. 92) that each closed normal cone in a weakly sequentially complete locally convex space is regular and fully regular. Part of the main theorem of this paper shows that a certain amount of weak sequential completeness is necessary in order that each closed normal cone be regular. Specifically, it is shown that each closed normal cone in a Fréchet space is regular if and only if each closed subspace with an unconditional basis is weakly sequentially complete. If E is a strongly separable conjugate of a Banach space it is shown that each closed normal cone in E is fully regular. If E is a Banach space with an unconditional basis it is shown that each closed normal cone in E is fully regular if and only if E is the conjugate of a Banach space.


1990 ◽  
Vol 33 (1) ◽  
pp. 53-59 ◽  
Author(s):  
E. Ansari-Piri

The famous Cohen factorization theorem, which says that every Banach algebra with bounded approximate identity factors, has already been generalized to locally convex algebras with what may be termed “uniformly bounded approximate identities”. Here we introduce a new notion, that of fundamentality generalizing both local boundedness and local convexity, and we show that a fundamental Fréchet algebra with uniformly bounded approximate identity factors. Fundamentality is a topological vector space property rather than an algebra property. We exhibit some non-fundamental topological vector space and give a necessary condition for Orlicz space to be fundamental.


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


2016 ◽  
Vol 19 (4) ◽  
pp. 160-168
Author(s):  
Dinh Nguyen ◽  
Mo Hong Tran

In this paper we establish characterizations of the containment of the set {xX: xC,g(x)K}{xX: f (x)0}, where C is a closed convex subset of a locally convex Hausdorff topological vector space, X, K is a closed convex cone in another locally convex Hausdorff topological vector space and g:X Y is a K- convex mapping, in a reverse convex set, define by the proper, lower semicontinuous, convex function. Here, no constraint qualification condition or qualification condition are assumed. The characterizations are often called asymptotic Farkas-type results. The second part of the paper was devoted to variant Asymptotic Farkas-type results where the mapping is a convex mapping with respect to an extended sublinear function. It is also shown that under some closedness conditions, these asymptotic Farkas lemmas go back to non-asymptotic Farkas lemmas or stable Farkas lemmas established recently in the literature. The results can be used to study the optimization


Sign in / Sign up

Export Citation Format

Share Document