Finite Groups the Centralizers of whose involutions have Normal 2-Complements

1969 ◽  
Vol 21 ◽  
pp. 335-357 ◽  
Author(s):  
Daniel Gorenstein

In this paper we shall classify all finite groups in which the centralizer of every involution has a normal 2-complement. For brevity, we call such a group an I-group. To state our classification theorem precisely, we need a preliminary definition.As is well-known, the automorphism group G = PΓL(2, q) of H= PSL(2, q), q= pn, is of the form G = LF, where L = PGL(2, q), L ⨞ G, F is cyclic of order n, L ∩ F = 1, and the elements of F are induced from semilinear transformations of the natural vector space on which GL(2, q) acts; cf. (3, Lemma 2.1) or (7, Lemma 3.3). It follows at once (4, Lemma 2.1; 8, Lemma 3.1) that the groups H and L are each I-groups. Moreover, when q is an odd square, there is another subgroup of G in addition to L that contains H as a subgroup of index 2 and which is an I-group.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Ivan Arzhantsev ◽  
Ivan Bazhov

AbstractLet X be an affine toric variety. The total coordinates on X provide a canonical presentation $$\bar X \to X$$ of X as a quotient of a vector space $$\bar X$$ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


2006 ◽  
Vol 49 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe extend a result of Noritzsch, which describes the orbit sizes in the action of a Frobenius group G on a finite vector space V under certain conditions, to a more general class of finite solvable groups G. This result has applications in computing irreducible character degrees of finite groups. Another application, proved here, is a result concerning the structure of certain groups with few complex irreducible character degrees.


2015 ◽  
Vol 3 ◽  
Author(s):  
VAN CYR ◽  
BRYNA KRA

For a finite alphabet ${\mathcal{A}}$ and shift $X\subseteq {\mathcal{A}}^{\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group $\text{Aut}(X)$. For such systems, we show that every finitely generated subgroup of $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then $\text{Aut}(X)$ is virtually $\mathbb{Z}$; if $X$ has dense aperiodic points, then $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$. We also classify all finite groups that arise as the automorphism group of a shift.


Author(s):  
D. A. R. Wallace

SynopsisLet ℤ(G) be the integral group ring of the infinite dihedral groupG; the aim is to calculate Autℤ(G), the group of Z-linear automorphisms of ℤ(G). It is shown that Aut ℤ(G), the subgroup of Aut *ℤ(G) consisting of those automorphisms that preserve elementwise the centre of ℤ(G), is a normal subgroup of Aut *ℤ(G) of index 2 and that Aut*ℤ(G) may be embedded monomorphically intoM2(ℤ[t]), the ring of 2 × 2 matrices over a polynomial ring ℤ[t]From this embedding and by the Noether—Skolem Theorem it is shown that Inn (G), the group of inner automorphisms of ℤ(G) induced by the units of ℤ(G), is a normal subgroup of Aut*ℤ(G)/ such that Aut*ℤ(G)/Inn (G) is isomorphic to the Klein four-group.


1979 ◽  
Vol 2 (2) ◽  
pp. 187-208 ◽  
Author(s):  
T. G. Ostrom

The author considers one of the main problems in finite translation planes to be the identification of the abstract groups which can act as collineation groups and how those groups can act.The paper is concerned with the case where the plane is defined on a vector space of dimension2d overGF(q), whereqanddare odd. If the stabilizer of the zero vector is non-solvable, letG0be a minimal normal non-solvable subgroup. We suspect thatG0must be isomorphic to someSL(2,u)or homomorphic toA6orA7. Our main result is that this is the case whendis the product of distinct primes.The results depend heavily on the Gorenstein-Walter determination of finite groups having dihedral Sylow2-groups whendandqare both odd. The methods and results overlap those in a joint paper by Kallaher and the author which is to appear in Geometriae Dedicata. The only known example (besides Desarguesian planes) is Hering's plane of order27(i.e.,dandqare both equal to3) which admitsSL(2,13).


2021 ◽  
Vol 13 (1) ◽  
pp. 142-148
Author(s):  
O.G. Ganyushkin ◽  
O.O. Desiateryk

In this paper we consider variants of the power set and the lattice of subspaces and study automorphism groups of these variants. We obtain irreducible generating sets for variants of subsets of a finite set lattice and subspaces of a finite vector space lattice. We prove that automorphism group of the variant of subsets of a finite set lattice is a wreath product of two symmetric permutation groups such as first of this groups acts on subsets. The automorphism group of the variant of the subspace of a finite vector space lattice is a natural generalization of the wreath product. The first multiplier of this generalized wreath product is the automorphism group of subspaces lattice and the second is defined by the certain set of symmetric groups.


Sign in / Sign up

Export Citation Format

Share Document