Abelian Groups Quasi-Injective Over their Endomorphism Rings

1972 ◽  
Vol 24 (4) ◽  
pp. 617-621 ◽  
Author(s):  
George D. Poole ◽  
James D. Reid

L. Fuchs has posed the problem of identifying those abelian groups that can serve as the additive structure of an injective module over some ring [1, p. 179], and in particular of identifying those abelian groups which are injective as modules over their endomorphism rings [1, p. 112]. Richman and Walker have recently answered the latter question, generalized in a non-trivial way [7], and have shown that the groups in question are of a rather restricted structure.In this paper we consider abelian groups which are quasi-injective over their endomorphism rings. We show that divisible groups are quasi-injective as are direct sums of cyclic p-groups. Quasi-injectivity of certain direct sums (products) is characterized in terms of the summands (factors). In general it seems that the answer to the question of whether or not a group G is quasinjective over its endomorphism ring E depends on how big HomE(H, G) is, with H a fully invariant subgroup of G.

2010 ◽  
Vol 52 (A) ◽  
pp. 69-82 ◽  
Author(s):  
ALBERTO FACCHINI ◽  
ŞULE ECEVIT ◽  
M. TAMER KOŞAN

AbstractWe show that the endomorphism rings of kernels ker ϕ of non-injective morphisms ϕ between indecomposable injective modules are either local or have two maximal ideals, the module ker ϕ is determined up to isomorphism by two invariants called monogeny class and upper part, and a weak form of the Krull–Schmidt theorem holds for direct sums of these kernels. We prove with an example that our pathological decompositions actually take place. We show that a direct sum ofnkernels of morphisms between injective indecomposable modules can have exactlyn! pairwise non-isomorphic direct-sum decompositions into kernels of morphisms of the same type. IfERis an injective indecomposable module andSis its endomorphism ring, the duality Hom(−,ER) transforms kernels of morphismsER→ERinto cyclically presented left modules over the local ringS, sending the monogeny class into the epigeny class and the upper part into the lower part.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250208 ◽  
Author(s):  
PATRICK W. KEEF

Let [Formula: see text] be the class of abelian p-groups. A non-empty proper subclass [Formula: see text] is bounded if it is closed under subgroups, additively bounded if it is also closed under direct sums and perfectly bounded if it is additively bounded and closed under filtrations. If [Formula: see text], we call the partition of [Formula: see text] given by [Formula: see text] a B/U-pair. We state most of our results not in terms of bounded classes, but rather the corresponding B/U-pairs. Any additively bounded class contains a unique maximal perfectly bounded subclass. The idea of the length of a reduced group is generalized to the notion of the length of an additively bounded class. If λ is an ordinal or the symbol ∞, then there is a natural largest and smallest additively bounded class of length λ, as well as a largest and smallest perfectly bounded class of length λ. If λ ≤ ω, then there is a unique perfectly bounded class of length λ, namely the pλ-bounded groups that are direct sums of cyclics; however, this fails when λ > ω. This parallels results of Dugas, Fay and Shelah (1987) and Keef (1995) on the behavior of classes of abelian p-groups with elements of infinite height. It also simplifies, clarifies and generalizes a result of Cutler, Mader and Megibben (1989) which states that the pω + 1-projectives cannot be characterized using filtrations.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Brendan Goldsmith ◽  
Ketao Gong

AbstractNecessary and sufficient conditions to ensure that the direct sum of two Abelian groups with zero entropy is again of zero entropy are still unknown; interestingly the same problem is also unresolved for direct sums of Hopfian and co-Hopfian groups.We obtain sufficient conditions in some situations by placing restrictions on the homomorphisms between the groups. There are clear similarities between the various cases but there is not a simple duality involved.


Author(s):  
Piotr A. Krylov ◽  
Alexander V. Mikhalev ◽  
Askar A. Tuganbaev

1981 ◽  
Vol 33 (4) ◽  
pp. 817-825 ◽  
Author(s):  
Paul Hill

All groups herein are assumed to be abelian. It was not until the 1940's that it was known that a subgroup of an infinite direct sum of finite cyclic groups is again a direct sum of cyclics. This result rests on a general criterion due to Kulikov [7] for a primary abelian group to be a direct sum of cyclic groups. If G is p-primary, Kulikov's criterion presupposes that G has no elements (other than zero) having infinite p-height. For such a group G, the criterion is simply that G be the union of an ascending sequence of subgroups Hn where the heights of the elements of Hn computed in G are bounded by some positive integer λ(n). The theory of abelian groups has now developed to the point that totally projective groups currently play much the same role, at least in the theory of torsion groups, that direct sums of cyclic groups and countable groups played in combination prior to the discovery of totally projective groups and their structure beginning with a paper by R. Nunke [11] in 1967.


Sign in / Sign up

Export Citation Format

Share Document