Operators of Rank One in Reflexive Algebras

1976 ◽  
Vol 28 (1) ◽  
pp. 19-23 ◽  
Author(s):  
W. E. Longstaff

If H is a (complex) Hilbert space and is a collection of (closed linear) subspaces of H it is easily shown that the set of all (bounded linear) operators acting on H which leave every member of invariant is a weakly closed operator algebra containing the identity operator. This algebra is denoted by Alg . In the study of such algebras it may be supposed [4] that is a subspace lattice i.e. that is closed under the formation of arbitrary intersections and arbitrary (closed linear) spans and contains both the zero subspace (0) and H. The class of such algebras is precisely the class of reflexive algebras [3].

Author(s):  
B. S. Yadav ◽  
S. Chatterjee

AbstractLet B(H) be the Banach algebra of all (bounded linear) operators on an infinite-dimensional separable complex Hilbert space H and let be a bounded sequence of positive real numbers. For a given injective operator A in B(H) and a non-zero vector f in H, we put We define a weighted shift Tw with the weight sequence on the Hilbert space 12 of all square-summable complex sequences by . The main object of this paper is to characterize the invariant subspace lattice of Tw under various nice conditions on the operator A and the sequence .


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1974 ◽  
Vol 26 (3) ◽  
pp. 565-575 ◽  
Author(s):  
W. E. Longstaff

A collection of subspaces of a Hilbert space is called a nest if it is totally ordered by inclusion. The set of all bounded linear operators leaving invariant each member of a given nest forms a weakly-closed algebra, called a nest algebra. Nest algebras were introduced by J. R. Ringrose in [9]. The present paper is concerned with generating nest algebras as weakly-closed algebras, and in particular with the following question which was first raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a separable Hilbert space generated, as a weakly-closed algebra, by two operators? That the answer to this question is affirmative is proved by first reducing the problem using the main result of [8] and then by using a characterization of nests due to J. A. Erdos [2].


1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


1976 ◽  
Vol 17 (2) ◽  
pp. 158-160
Author(s):  
Guyan Robertson

In what follows, B(H) will denote the C*-algebra of all bounded linear operators on a Hilbert space H. Suppose we are given a C*-subalgebra A of B(H), which we shall suppose contains the identity operator 1. We are concerned with the existence of states f of B(H) which satisfy the following trace-like relation relative to A:Our first result shows the existence of states f satisfying (*), when A is the C*-algebra C*(x) generated by a normaloid operator × and the identity. This allows us to give simple proofs of some well-known results in operator theory. Recall that an operator × is normaloid if its operator norm equals its spectral radius.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chaoqun Chen ◽  
Fangyan Lu ◽  
Cuimei Cui ◽  
Ling Wang

Let H be a complex Hilbert space. Denote by B H the algebra of all bounded linear operators on H . In this paper, we investigate the non-self-adjoint subalgebras of B H of the form T + B , where B is a block-closed bimodule over a masa and T is a subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T + B has the double commutant property in some particular cases.


1981 ◽  
Vol 33 (6) ◽  
pp. 1291-1308 ◽  
Author(s):  
Mehdi Radjabalipour

For each natural number n we define to be the class of all weakly closed algebras of (bounded linear) operators on a separable Hilbert space H such that the lattice of invariant subspaces of and (alg lat )(n) are the same. (If A is an operator, A(n) denotes the direct sum of n copies of A; if is a collection of operators,. Also, alg lat denotes the algebra of all operators leaving all invariant subspaces of invariant.) In the first section we show that . In Section 2 we prove that every weakly closed algebra containing a maximal abelian self adjoint algebra (m.a.s.a.) is , and that . It is also shown that certain algebras containing a m.a.s.a. are necessarily reflexive.


1975 ◽  
Vol 20 (2) ◽  
pp. 159-164
Author(s):  
W. E. Longstaff

For any collection of closed subspaces of a complex Hilbert space the set of bounded operators that leave invariant all the members of the collection is a weakly-closed algebra. The class of such algebras is precisely the class of reflexive algebras as defined for example in Radjavi and Rosenthal (1969) and contains the class of von Neumann algebras.In this paper we consider the problem of when such algebras are finitely generated as weakly-closed algebras. It is to be hoped that analysis of this problem may shed some light on the famous unsolved problem of whether every von Neumann algebra on a separable Hilbert space is finitely generated. The case where the underlying space is separable and the collection of subspaces is totally ordered is dealt with in Longstaff (1974). In the present paper the result of Longstaff (1974) is generalized to the case of a direct product of countably many totally ordered collections each on a separable space. Also a method of obtaining non-finitely generated reflexive algebras is given.


1966 ◽  
Vol 18 ◽  
pp. 1152-1160 ◽  
Author(s):  
Arlen Brown ◽  
Carl Pearcy

Let denote a separable, complex Hilbert space, and let R be a von Neumann algebra acting on . (A von Neumann algebra is a weakly closed, self-adjoint algebra of operators that contains the identity operator on its underlying space.) An element A of R is a commutator in R if there exist operators B and C in R such that A = BC — CB. The problem of specifying exactly which operators are commutators in R has been solved in certain special cases; e.g. if R is an algebra of type In (n < ∞) (2), and if R is a factor of type I∞ (1). It is the purpose of this note to treat the same problem in case R is a factor of type III. Our main result is the following theorem.


Sign in / Sign up

Export Citation Format

Share Document