Localization in Non-Commutative Noetherian Rings

1976 ◽  
Vol 28 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Bruno J. Müller

To construct a well behaved localization of a noetherian ringRat a semiprime ideal S, it seems necessary to assume that the set(S)of moduloSregular elements satisfies the Ore condition ; and it is convenient to require the Artin Rees property for the Jacobson radical of the quotient ringRsin addition: one calls such 5classical.To determine the classical semiprime ideals is no easy matter; it happens frequently that a prime ideal fails to be classical itself, but is minimal over a suitable classical semiprime ideal.

1980 ◽  
Vol 23 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. W. Chatters

A ring R is said to satisfy the right Ore condition with respect to a subset C of R if, given a ∈ R and e ∈ C, there exist b ∈ R and D ∈ C such that ad = cb. It is well known that R has a classical right quotient ring if and only if R satisfies the right Ore condition with respect to C when C is the set of regular elements of R (a regular elemept of R being an element of R which is not a zero-divisor). It is also well known that not every ring has a classical right quotient ring. If we make the non-trivial assumption that R has a classical right quotient ring, it is natural to ask whether this property also holds in certain rings related to R such as the ring Mn(R) of all n by n matrices over R. Some answers to this question are known when extra assumptions are made. For example, it was shown by L. W. Small in (5) that if R has a classical right quotient ring Q which is right Artinian then Mn(Q) is the right quotient ring of Mn(R) and eQe is the right quotient ring of eRe where e is an idempotent element of R. Also it was shown by C. R. Hajarnavis in (3) that if R is a Noetherian ring all of whose ideals satisfy the Artin-Rees property then R has a quotient ring Q and Mn(Q) is the quotient ring of Mn(R).


1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


1972 ◽  
Vol 24 (4) ◽  
pp. 703-712 ◽  
Author(s):  
A. G. Heinicke

J. Lambek and G. Michler [3] have initiated the study of a ring of quotients RP associated with a two-sided prime ideal P in a right noetherian ring R. The ring RP is the quotient ring (in the sense of [1]) associated with the hereditary torsion class τ consisting of all right R-modules M for which HomR(M, ER(R/P)) = 0, where ER(X) is the injective hull of the R-module X.In the present paper, we shall study further the properties of the ring RP. The main results are Theorems 4.3 and 4.6. Theorem 4.3 gives necessary and sufficient conditions for the torsion class associated with P to have property (T), as well as some properties of RP when these conditions are indeed satisfied, while Theorem 4.6 gives necessary and sufficient conditions for R to satisfy the right Ore condition with respect to (P).


1981 ◽  
Vol 33 (2) ◽  
pp. 325-346 ◽  
Author(s):  
A. G. Heinicke

If P is a right localizable prime ideal in a right Noetherian ring R, it is known that the ring RP is right Noetherian, that its Jacobson radical is the only maximal ideal, and that RP/J(RP) is simple Artinian: in short it has several properties of the commutative local rings.In the present work we examine the properties of RP under the additional assumption that P is generated by, or is a minimal prime above, a normalizing sequence. It is shown that in such cases J(RP) satisfies the AR-property (i.e., P is classical) and that the rank of P coincides with the Krull dimension of RP. The length of the normalizing sequence is shown to be an upper bound for the rank of P, and if P is generated by a normalizing sequence x1, x2, …, xn then the rank of P equals n if and only if the P-closures of the ideals Ij generated by x1, x2, …, xj (j = 0, 1, …, n), are all distinct primes.


2011 ◽  
Vol 21 (08) ◽  
pp. 1381-1394 ◽  
Author(s):  
CHANG IK LEE ◽  
YANG LEE

Jacobson introduced the concept of K-rings, continuing the investigation of Kaplansky and Herstein into the commutativity of rings. In this note we focus on the ring-theoretic properties of K-rings. We first construct basic examples of K-rings to be handled easily. It is shown that a semiprime K-ring of bounded index of nilpotency is a commutative domain. It is proved that if R is a prime K-ring then its classical quotient ring is a local ring with a nil Jacobson radical. We also show that if R is a π-regular K-ring then R/P is a field for every strongly prime ideal P of R. The basic structure of a condition, unifying K-rings and reversible rings, is studied with respect to zero-divisors in matrices and polynomials.


1981 ◽  
Vol 33 (3) ◽  
pp. 734-748 ◽  
Author(s):  
Bruno J. Müller

Our work was motivated by attempts to find a criterion for the existence of a classical quotient ring, for a noetherian ring, in analogy with the various known criteria for the existence of an artinian classical quotient ring ([9], [10], [13], [2]).We have restricted our attention to Krull symmetric noetherian rings R, and we make heavy use of the fact that all their Krull composition factors are non-singular (Proposition 7). The collection Kprime R of the associated primes of the Krull composition factors of R plays a central role, taking the place of the collection of the associated primes of R.


1972 ◽  
Vol 13 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. F. Smith

Djabali [1] has proved that, if R is a right and left noetherian ring with an identity and if the proper prime ideals of R are maximal, then R has a right and left artinian two-sided quotient ring. Robson [5, Theorem 2.11] and Small [6, Theorem 2.13] have proved independently that, if Ris a commutative noetherian ring, then Rhas an artinian quotient ring if and only if the prime ideals of Rthat belong to the zero ideal are all minimal. We shall generalise these results by proving theTheorem. Let R be a right and left noetherian ring with a regular element. Then R has a right and left artinian two-sided quotient ring if and only if each prime ideal of R consisting of zero–divisors is minimal.


1986 ◽  
Vol 103 ◽  
pp. 39-66 ◽  
Author(s):  
Daniel Katz ◽  
Louis J. Ratliff

All rings in this paper are assumed to be commutative with identity, and they will generally also be Noetherian.In several recent papers the asymptotic theory of ideals in Noetherian rings has been introduced and developed. In this new theory the roles played in the standard theory by associated primes, R-sequences, classical grade, and Cohen-Macaulay rings are played by, respectively, asymptotic prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-unmixed Noetherian rings. And up to the present time it has been shown that quite a few results from the standard theory have a valid analogue in the asymptotic theory, and a number of interesting and useful new results concerning the asymptotic prime divisors of an ideal in a Noetherian ring have also been proved. In fact the analogy between the two theories is so good that a very useful (but not completely valid) working guide is: results from the standard theory should have a valid analogue in the asymptotic theory. And, although asymptotic sequences are coarser than R-sequences (for example, they behave nicely when passing to R/z with z a minimal prime ideal in R), the converse of this working guide has also proved useful.


2003 ◽  
Vol 02 (03) ◽  
pp. 351-364 ◽  
Author(s):  
KARL A. KOSLER

Symmetric radicals over a fully semiprimary Noetherian ring R are characterized in terms of stability on bimodules and link closure of special classes of prime ideals. The notion of subdirect irreduciblity with respect to a torsion radical is introduced and is shown to be invariant under internal bonds between prime ideals. An analog of the Jacobson radical is produced which is properly larger than the Jacobson radical, yet satisfies the conclusion of Jacobson's conjecture for right fully semiprimary Noetherian rings.


1999 ◽  
Vol 42 (2) ◽  
pp. 174-183 ◽  
Author(s):  
Miguel Ferrero ◽  
Alveri Sant’Ana

AbstractThe class of rings studied in this paper properly contains the class of right distributive rings which have at least one completely prime ideal in the Jacobson radical. Amongst other results we study prime and semiprime ideals, right noetherian rings with comparability and prove a structure theorem for rings with comparability. Several examples are also given.


Sign in / Sign up

Export Citation Format

Share Document