The Quotient Problem for Noetherian Rings

1981 ◽  
Vol 33 (3) ◽  
pp. 734-748 ◽  
Author(s):  
Bruno J. Müller

Our work was motivated by attempts to find a criterion for the existence of a classical quotient ring, for a noetherian ring, in analogy with the various known criteria for the existence of an artinian classical quotient ring ([9], [10], [13], [2]).We have restricted our attention to Krull symmetric noetherian rings R, and we make heavy use of the fact that all their Krull composition factors are non-singular (Proposition 7). The collection Kprime R of the associated primes of the Krull composition factors of R plays a central role, taking the place of the collection of the associated primes of R.

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


1986 ◽  
Vol 103 ◽  
pp. 39-66 ◽  
Author(s):  
Daniel Katz ◽  
Louis J. Ratliff

All rings in this paper are assumed to be commutative with identity, and they will generally also be Noetherian.In several recent papers the asymptotic theory of ideals in Noetherian rings has been introduced and developed. In this new theory the roles played in the standard theory by associated primes, R-sequences, classical grade, and Cohen-Macaulay rings are played by, respectively, asymptotic prime divisors, asymptotic sequences, asymptotic grade, and locally quasi-unmixed Noetherian rings. And up to the present time it has been shown that quite a few results from the standard theory have a valid analogue in the asymptotic theory, and a number of interesting and useful new results concerning the asymptotic prime divisors of an ideal in a Noetherian ring have also been proved. In fact the analogy between the two theories is so good that a very useful (but not completely valid) working guide is: results from the standard theory should have a valid analogue in the asymptotic theory. And, although asymptotic sequences are coarser than R-sequences (for example, they behave nicely when passing to R/z with z a minimal prime ideal in R), the converse of this working guide has also proved useful.


1984 ◽  
Vol 36 (2) ◽  
pp. 344-360 ◽  
Author(s):  
Juana Iroz ◽  
David E. Rush

The theory of associated prime ideals is one of the most basic notions in the study of modules over commutative Noetherian rings. For modules over non-Noetherian rings however, the classical associated primes are not so useful and in fact do not exist for some modules M. In [4] [22] a prime ideal P of a ring R is said to be attached to an R-module M if for each finite subset I of P there exists m ∊ M such that I ⊆ annR(m) ⊆ P. In [4] the attached primes were compared to the associated primes and the results of [4], [22], [23], [24] show that the attached primes are a useful alternative in non-Noetherian rings to associated primes. Several other methods of associating a set of prime ideals to a module M over a non-Noetherian ring have proven very useful in the past. The most common of these is the set Assf(M) of weak Bourbaki primes of M [2, pp. 289-290].


1976 ◽  
Vol 28 (3) ◽  
pp. 600-610 ◽  
Author(s):  
Bruno J. Müller

To construct a well behaved localization of a noetherian ringRat a semiprime ideal S, it seems necessary to assume that the set(S)of moduloSregular elements satisfies the Ore condition ; and it is convenient to require the Artin Rees property for the Jacobson radical of the quotient ringRsin addition: one calls such 5classical.To determine the classical semiprime ideals is no easy matter; it happens frequently that a prime ideal fails to be classical itself, but is minimal over a suitable classical semiprime ideal.


1980 ◽  
Vol 23 (2) ◽  
pp. 187-192 ◽  
Author(s):  
A. W. Chatters

A ring R is said to satisfy the right Ore condition with respect to a subset C of R if, given a ∈ R and e ∈ C, there exist b ∈ R and D ∈ C such that ad = cb. It is well known that R has a classical right quotient ring if and only if R satisfies the right Ore condition with respect to C when C is the set of regular elements of R (a regular elemept of R being an element of R which is not a zero-divisor). It is also well known that not every ring has a classical right quotient ring. If we make the non-trivial assumption that R has a classical right quotient ring, it is natural to ask whether this property also holds in certain rings related to R such as the ring Mn(R) of all n by n matrices over R. Some answers to this question are known when extra assumptions are made. For example, it was shown by L. W. Small in (5) that if R has a classical right quotient ring Q which is right Artinian then Mn(Q) is the right quotient ring of Mn(R) and eQe is the right quotient ring of eRe where e is an idempotent element of R. Also it was shown by C. R. Hajarnavis in (3) that if R is a Noetherian ring all of whose ideals satisfy the Artin-Rees property then R has a quotient ring Q and Mn(Q) is the quotient ring of Mn(R).


2018 ◽  
Vol 55 (3) ◽  
pp. 345-352
Author(s):  
Tran Nguyen An

Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0R ⋉ M.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1532
Author(s):  
Dong Kyu Kim ◽  
Jung Wook Lim

Let Γ be a commutative monoid, R=⨁α∈ΓRα a Γ-graded ring and S a multiplicative subset of R0. We define R to be a graded S-Noetherian ring if every homogeneous ideal of R is S-finite. In this paper, we characterize when the ring R is a graded S-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded S-Noetherian ring. Finally, we give an example of a graded S-Noetherian ring which is not an S-Noetherian ring.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


1972 ◽  
Vol 24 (4) ◽  
pp. 703-712 ◽  
Author(s):  
A. G. Heinicke

J. Lambek and G. Michler [3] have initiated the study of a ring of quotients RP associated with a two-sided prime ideal P in a right noetherian ring R. The ring RP is the quotient ring (in the sense of [1]) associated with the hereditary torsion class τ consisting of all right R-modules M for which HomR(M, ER(R/P)) = 0, where ER(X) is the injective hull of the R-module X.In the present paper, we shall study further the properties of the ring RP. The main results are Theorems 4.3 and 4.6. Theorem 4.3 gives necessary and sufficient conditions for the torsion class associated with P to have property (T), as well as some properties of RP when these conditions are indeed satisfied, while Theorem 4.6 gives necessary and sufficient conditions for R to satisfy the right Ore condition with respect to (P).


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


Sign in / Sign up

Export Citation Format

Share Document