Every Hausdorff Compactification of a Locally Compact Separable Space is a Ga Compactification

1977 ◽  
Vol 29 (1) ◽  
pp. 125-131
Author(s):  
J. Van Mill

In [4], De Groot and Aarts constructed Hausdorff compactifications of topological spaces to obtain a new intrinsic characterization of complete regularity. These compactifications were called GA compactifications in [5] and [7]. A characterization of complete regularity was earlier given by Frink [3], by means of Wallman compactifications, a method which led to the intriguing problem of whether every Hausdorff compactification is a Wallman compactification.

1979 ◽  
Vol 2 (3) ◽  
pp. 481-486
Author(s):  
James Hatzenbuhler ◽  
Don A. Mattson

LetXbe a completely regular, Hausdorff space and letRbe the set of points inXwhich do not possess compact neighborhoods. AssumeRis compact. IfXhas a compactification with a countable remainder, then so does the quotientX/R, and a countable compactificatlon ofX/Rimplies one forX−R. A characterization of whenX/Rhas a compactification with a countable remainder is obtained. Examples show that the above implications cannot be reversed.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6307-6311
Author(s):  
Gjorgji Markoski ◽  
Abdulla Buklla

We use a characterization of quasicomponents by continuous functions to obtain the well known theorem which states that product of quasicomponents Qx,Qy of topological spaces X,Y, respectively, gives quasicomponent in the product space X x Y. If spaces X,Y are locally-compact, paracompact and Haussdorf, then we prove that the space of quasicomponents of the product Q(XxY) is homeomorphic with the product space Q(X) x Q(Y), so these two spaces have the same topological properties.


1980 ◽  
Vol 32 (4) ◽  
pp. 804-820 ◽  
Author(s):  
M. van de Vel

In the last fifteen years, topology has shown up with an increasing interest in the use of closed subbases. Starting from Frink's internal characterization of complete regularity (Frink [6]), DeGroot and Aarts used closed subbases to obtain Hausdorff compactifications of completely regular spaces, thus giving a characterization of the latter in terms of their subbases [1]. The main tool of that paper is the notion of a linked system, which naturally leads to the notions of supercompactness and superextensions [7]. After 1970, these two topics developed to indepedennt theories, with several deep results available at this moment. Most results up to 1976 are summarized in [12].


2020 ◽  
Vol 8 (1) ◽  
pp. 114-165
Author(s):  
Tetsu Toyoda

AbstractGromov (2001) and Sturm (2003) proved that any four points in a CAT(0) space satisfy a certain family of inequalities. We call those inequalities the ⊠-inequalities, following the notation used by Gromov. In this paper, we prove that a metric space X containing at most five points admits an isometric embedding into a CAT(0) space if and only if any four points in X satisfy the ⊠-inequalities. To prove this, we introduce a new family of necessary conditions for a metric space to admit an isometric embedding into a CAT(0) space by modifying and generalizing Gromov’s cycle conditions. Furthermore, we prove that if a metric space satisfies all those necessary conditions, then it admits an isometric embedding into a CAT(0) space. This work presents a new approach to characterizing those metric spaces that admit an isometric embedding into a CAT(0) space.


2020 ◽  
Vol 32 (6) ◽  
pp. 1395-1406
Author(s):  
Joseph Chuang ◽  
Andrey Lazarev

AbstractWe show that the notions of homotopy epimorphism and homological epimorphism in the category of differential graded algebras are equivalent. As an application we obtain a characterization of acyclic maps of topological spaces in terms of induced maps of their chain algebras of based loop spaces. In the case of a universal acyclic map we obtain, for a wide class of spaces, an explicit algebraic description for these induced maps in terms of derived localization.


2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


Author(s):  
Prasadini Mahapatra ◽  
Divya Singh

Scaling and generalized scaling sets determine wavelet sets and hence wavelets. In real case, wavelet sets were proved to be an important tool for the construction of MRA as well as non-MRA wavelets. However, any result related to scaling/generalized scaling sets is not available in case of locally compact abelian groups. This paper gives a characterization of scaling sets and its generalized version along with relevant examples in dual Cantor dyadic group [Formula: see text]. These results can further be generalized to arbitrary locally compact abelian groups.


1978 ◽  
Vol 30 (1) ◽  
pp. 304-316 ◽  
Author(s):  
Rudolf-E. Hoffmann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document