Quadratic forms over Quadratic Extensions of Fields with Two Quaternion Algebras

1979 ◽  
Vol 31 (5) ◽  
pp. 1047-1058 ◽  
Author(s):  
Craig M. Cordes ◽  
John R. Ramsey

In this paper, we analyze what happens with respect to quadratic forms when a square root is adjoined to a field F which has exactly two quaternion algebras. There are many such fields—the real numbers and finite extensions of the p-adic numbers being two familiar examples. For general quadratic extensions, there are many unanswered questions concerning the quadratic form structure, but for these special fields we can clear up most of them.It is assumed char F ≠ 2 and K = F (√a) where a ∊ Ḟ – Ḟ2. Ḟ denotes the non-zero elements of F. Generally the letters a, b, c, … and α, β, … refer to elements from Ḟ and x, y, z, … come from .

1961 ◽  
Vol 57 (3) ◽  
pp. 507-515
Author(s):  
G. M. Kelly

The problem discussed here arose in the course of some reflections on the critical point theory of Lusternik and Schnirelmann (4). In (4) it is shown how it is possible to associate, with a suitably differentifiable real-valued function f defined on a compact manifold M, a set of real numbers λ1 ≤ λ2 ≤ … λc, which are critical levels of f and which in certain respects are analogous to, and indeed generalizations of, the eigenvalues of a quadratic form. The number c depends on M and is called the category of M. If Rn is Euclidean n-space, Sn the unit sphere of Rn+1, and Pn the real projective n-space obtained from Sn by identifying opposite points, then a quadratic form φ in the (n + 1) coordinates of Rn+1 defines a real function on Sn and, by passage to the quotient, on Pn. Pn has category n + 1, and the numbers λ in this case are just the eigenvalues of the quadratic form.


1981 ◽  
Vol 89 (2) ◽  
pp. 225-235 ◽  
Author(s):  
Madhu Raka

Let Qr be a real indefinite quadratic form in r variables of determinant D ≠ 0 and of type (r1, r2), 0 < r1 < r, r = r1 + r2, S = r1 − r2 being the signature of Qr. It is known (e.g. Blaney (3)) that, given any real numbers c1, c2,…, cr, there exists a constant C depending only on r and s such that the inequalityhas a solution in integers x1, x2, …, xr.


1982 ◽  
Vol 87 ◽  
pp. 247-260 ◽  
Author(s):  
J. W. Benham ◽  
J. S. Hsia

Let f(x1 …, xm) be a quadratic form with integer coefficients and c ∈ Z. If f(x) = c has a solution over the real numbers and if f(x) ≡ c (mod N) is soluble for every modulus N, then at least some form h in the genus of f represents c. If m ≧ 4 one may further conclude that h belongs to the spinor genus of f. This does not hold when m = 3.


Author(s):  
R. J. Hans-Gill ◽  
Madhu Raka

AbstractHere it is proved that if Q(x, y, z, t, u) is a real indefinite quinary quadratic form of type (4,1) and determinant D, then given any real numbers x0, y0, z0, t0, u0 there exist integers x, y, z, t, u such thatAll critical forms are also obtained.


Author(s):  
Madhu Raka

The famous conjecture of Watson(11) on the minima of indefinite quadratic forms in n variables has been proved for n ≤ 5, n ≥ 21 and for signatures 0 and ± 1. For the details and history of the conjecture the reader is referred to the author's paper(8). In the succeeding paper (9), we prove Watson's conjecture for signature ± 2 and ± 3 and for all n. Thus only one case for n = 6 (i.e. forms of type (1, 5) or (5, 1)) remains to he proved which we do here; thereby completing the case n = 6. This result is also used in (9) for proving the conjecture for all quadratic forms of signature ± 4. More precisely, here we prove:Theorem 1. Let Q6(x1, …, x6) be a real indefinite quadratic form in six variables of determinant D ( < 0) and of type (5, 1) or (1, 5). Then given any real numbers ci, 1 ≤ i ≤ 6, there exist integers x1,…, x6such that


1967 ◽  
Vol 63 (3) ◽  
pp. 579-586 ◽  
Author(s):  
A. Fröhlich

In this note (cf. sections 3, 4) I shall give an axiomatization of those fields (of characteristic ≠ 2) which have a theory of quadratic forms like the -adic numbers or like the real numbers. This leads then, for instance, to a generalization of the well-known theorems on -adic forms to a wider class of fields, including non-local ones. The main purpose of the exercise is, however, to separate out the roles of the arithmetic in the underlying field, on the one hand, which solely enters into the verification of the axioms, and of the ordinary algebra of quadratic forms on the other hand. The resulting clarification of the structure of the theory is of interest even in the known -adic case.


1993 ◽  
Vol 58 (2) ◽  
pp. 456-476
Author(s):  
Margarita Otero

AbstractModels of normal open induction (NOI) are those discretely ordered rings, integrally closed in their fraction field whose nonnegative part satisfy Peano's induction axioms for open formulas in the language of ordered semirings.Here we study the problem of representability of an element a of a model M of NOI (in some extension of M) by a quadratic form of the type X2 + b Y2 where b is a nonzero integer. Using either a trigonometric or a hyperbolic parametrization we prove that except in some trivial cases, M[x, y] with x2 + by2 = a can be embedded in a model of NOI.We also study quadratic extensions of a model M of NOI; we first prove some properties of the ring of Gaussian integers of M. Then we study the group of solutions of a Pell equation in NOI; we construct a model in which the quotient group by the squares has size continuum.


1980 ◽  
Vol 29 (4) ◽  
pp. 439-453 ◽  
Author(s):  
R. J. Hans-Gill ◽  
Madhu Raka

AbstractLet Q(x, y, z, t, u) be a real indefinite 5-ary quadratic form of type (3,2) and determinant D(> 0). Then given any real numbers x0, y0, z0, t0, u0 there exist integers x, y, z, t, u such that 0 < Q(x+x0,y+y0,z+z0,t+t0,u+u0)≦(16D)1/5. All the critical forms are also determined.


2008 ◽  
Vol 92 (525) ◽  
pp. 431-436 ◽  
Author(s):  
Sandra Pulver

Are there solutions of the equation x2 + 1 = 0 ? Carl Fredrich Gauss (1777–1855) conjectured that there was a solution and that it was the square root of - 1 . But since the squares of all real numbers, positive or negative, are positive, Gauss introduced a fanciful idea. His solution to this equation was , which he named i. He integrated i with the real numbers to form a set known as , the complex numbers, where each element in that set was of the form a + bi, where a, . Gauss illustrated this on a graph, the horizontal axis became the real axis and represented the real coefficient, while the vertical axis became the imaginary axis and represented the imaginary coefficient.


1968 ◽  
Vol 8 (1) ◽  
pp. 87-101 ◽  
Author(s):  
Vishwa Chander Dumir

Let Q(x1, …, xn) be an indefinite quadratic form in n-variables with real coefficients, determinant D ≠ 0 and signature (r, s), r+s = n. Then it is known (e.g. see Blaney [2]) that there exist constants Γr, s depending only on r and s such for any real numbers c1, …, cn we can find integers x1, …, xn satisfying


Sign in / Sign up

Export Citation Format

Share Document