Locally Compact Hjelmslev Planes and Rings

1981 ◽  
Vol 33 (4) ◽  
pp. 988-1021 ◽  
Author(s):  
J. W. Lorimer

Affine and projective Hjelmslev planes are generalizations of ordinary affine and projective planes where two points (lines) may be joined by (may intersect in) more than one line (point). The elements involved in multiple joinings or intersections are neighbours, and the neighbour relations on points respectively lines are equivalence relations whose quotient spaces define an ordinary affine or projective plane called the canonical image of the Hjelmslev plane. An affine or projective Hjelmslev plane is a topological plane (briefly a TH-plane and specifically a TAH-plane respectively a TPH-plane) if its point and line sets are topological spaces so that the joining of non-neighbouring points, the intersection of non-neighbouring lines and (in the affine case) parallelism are continuous maps, and the neighbour relations are closed.In this paper we continue our investigation of such planes initiated by the author in [38] and [39].

2020 ◽  
Vol 9 (11) ◽  
pp. 9353-9360
Author(s):  
G. Selvi ◽  
I. Rajasekaran

This paper deals with the concepts of semi generalized closed sets in strong generalized topological spaces such as $sg^{\star \star}_\mu$-closed set, $sg^{\star \star}_\mu$-open set, $g^{\star \star}_\mu$-closed set, $g^{\star \star}_\mu$-open set and studied some of its basic properties included with $sg^{\star \star}_\mu$-continuous maps, $sg^{\star \star}_\mu$-irresolute maps and $T_\frac{1}{2}$-space in strong generalized topological spaces.


2019 ◽  
Vol 7 (1) ◽  
pp. 29-37
Author(s):  
Jose S. Cánovas

AbstractIn this paper we review and explore the notion of topological entropy for continuous maps defined on non compact topological spaces which need not be metrizable. We survey the different notions, analyze their relationship and study their properties. Some questions remain open along the paper.


Author(s):  
B. J. Day ◽  
G. M. Kelly

We are concerned with the category of topological spaces and continuous maps. A surjection f: X → Y in this category is called a quotient map if G is open in Y whenever f−1G is open in X. Our purpose is to answer the following three questions:Question 1. For which continuous surjections f: X → Y is every pullback of f a quotient map?Question 2. For which continuous surjections f: X → Y is f × lz: X × Z → Y × Z a quotient map for every topological space Z? (These include all those f answering to Question 1, since f × lz is the pullback of f by the projection map Y ×Z → Y.)Question 3. For which topological spaces Z is f × 1Z: X × Z → Y × Z a qiptoent map for every quotient map f?


2015 ◽  
Vol 25 (11) ◽  
pp. 1550150 ◽  
Author(s):  
Oxana Cerba Diaconescu ◽  
Dana Schlomiuk ◽  
Nicolae Vulpe

In this article, we consider the class [Formula: see text] of all real quadratic differential systems [Formula: see text], [Formula: see text] with gcd (p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class [Formula: see text] so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, ℝ) × ℝ* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.


1986 ◽  
Vol 38 (6) ◽  
pp. 1281-1298 ◽  
Author(s):  
S. Iliadis ◽  
V. Tzannes

This paper is concerned with topological spaces whose continuous maps into a given space R are constant, as well as with spaces having this property locally. We call these spaces R-monolithic and locally R-monolithic, respectively.Spaces with such properties have been considered in [1], [5]-[7], [10], [11], [22], [28], [31], where with the exception of [10], the given space R is the set of real-numbers with the usual topology. Obviously, for a countable space, connectedness is equivalent to the property that every continuous real-valued map is constant. Countable connected (locally connected) spaces have been constructed in papers [2]-[4], [8], [9], [11]-[21], [23]-[26], [30].


2015 ◽  
Vol 08 (03) ◽  
pp. 1550059
Author(s):  
S. A. Abd-El Baki ◽  
O. R. Sayed

In this paper, the concepts of [Formula: see text]-closed and [Formula: see text]-continuous maps are introduced and several properties of them are investigated. These concepts are used to obtain several results concerning the preservation of [Formula: see text]-closed sets. Moreover, we use [Formula: see text]-closed and [Formula: see text]-continuous maps to obtain a characterization of semi-[Formula: see text] spaces.


Filomat ◽  
2007 ◽  
Vol 21 (1) ◽  
pp. 55-65
Author(s):  
M.R. Adhikari ◽  
M. Rahaman

The aim of this paper is to find a generalization of topological groups. The concept arises out of the investigation to obtain a group structure on the set [X,Y], of homotopy classes of maps from a space X to a given space Y for all X which is natural with respect to X. We also study the generalized topological groups. Finally, associated with each generalized topological group we construct a contra variant functor from the homotopy category of pointed topological spaces and base point preserving continuous maps to the category of groups and homomorphism.


Sign in / Sign up

Export Citation Format

Share Document