Some Results on the Center of an Algebra of Operators on VN(G) for the Heisenberg group

1981 ◽  
Vol 33 (6) ◽  
pp. 1469-1486 ◽  
Author(s):  
C. Cecchini ◽  
A. Zappa

Let G be an amenable locally compact group. We will use the terminology of [3] and denote by VN(G) the Von Neumann algebra of the regular representation and by A(G) its predual, which is the algebra of the coefficients of the regular representation. The Von Neumann algebra VN(G) is, in a natural fashion, a module with respect to A(G) [3].The algebra of bounded linear operators on VN(G), which commute with the action of A(G), has been studied in [6] and in [1]. If UCB(Ĝ) is the space of the elements of VN(G) of the form vT, for some v in A(G) and some T in VN(G) (see for instance [4]), in [6] and in [1] it is proved that, for any amenable locally compact group there exists an isometric bijection between and UCB(Ĝ)*.

2018 ◽  
Vol 14 (1) ◽  
pp. 7596-7614
Author(s):  
Julien Esse Atto ◽  
Victor Kofi Assiamoua

Let G be a locally compact group equipped with a normalized Haar measure , A(G) the Fourier algebraof G and V N(G) the von Neumann algebra generated by the left regular representation of G. In this paper, we introduce the space V N(G;A) associated with the Fourier algebra A(G;A) for vector-valued functions on G, where A is a H-algebra. Some basic properties are discussed in the category of Banach space, and alsoin the category of operator space.


1979 ◽  
Vol 85 (2) ◽  
pp. 271-280 ◽  
Author(s):  
Ronny Rousseau

Let M be a von Neumann algebra acting on a Hilbert space , and let G be a locally compact group. We consider an extension of G by , the unitary group of M. If the triple satisfies an additional axiom, we say that it is an extended covariant system. We define a Hilbert space and operators , acting on . The von Neumann algebra is then the covariance algebra of the extended covariant system , denoted by .


2019 ◽  
Vol 26 (4) ◽  
pp. 505-513
Author(s):  
Gerhard Racher

Abstract We observe a connection between the existence of square-integrable representations of a locally compact group G and the existence of nonzero translation invariant operators from its Fourier–Stieltjes algebra {B(G)} into {L^{2}(G)} or, equivalently, from {L^{2}(G)} into its enveloping von Neumann algebra {C^{*}(G)^{**}} .


1997 ◽  
Vol 49 (6) ◽  
pp. 1117-1138
Author(s):  
Zhiguo Hu

AbstractLet VN(G) be the von Neumann algebra of a locally compact group G. We denote by μ the initial ordinal with |μ| equal to the smallest cardinality of an open basis at the unit of G and X = ﹛α ; α < μ﹜.We show that if G is nondiscrete then there exist an isometric *-isomorphism of l∞(X) into VN(G) and a positive linear mapping π of VN(G) onto l∞(X) such that π o = idl∞(X) and and π have certain additional properties. Let UCB((Ĝ)) be the C*–algebra generated by operators in VN(G) with compact support and F(Ĝ) the space of all T∈ VN(G) such that all topologically invariant means on VN(G) attain the same value at T. The construction of the mapping π leads to the conclusion that the quotient space UCB((Ĝ))/F((Ĝ)) ∪UCB((Ĝ)) has l∞(X) as a continuous linear image if G is nondiscrete. When G is further assumed to be non-metrizable, it is shown that UCB((Ĝ))/F((Ĝ)) ∪UCB((Ĝ)) contains a linear isomorphic copy of l∞(X). Similar results are also obtained for other quotient spaces.


2006 ◽  
Vol 58 (4) ◽  
pp. 768-795 ◽  
Author(s):  
Zhiguo Hu ◽  
Matthias Neufang

AbstractThe decomposability number of a von Neumann algebra ℳ (denoted by dec(ℳ)) is the greatest cardinality of a family of pairwise orthogonal non-zero projections in ℳ. In this paper, we explore the close connection between dec(ℳ) and the cardinal level of the Mazur property for the predual ℳ* of ℳ, the study of which was initiated by the second author. Here, our main focus is on those von Neumann algebras whose preduals constitute such important Banach algebras on a locally compact group G as the group algebra L1(G), the Fourier algebra A(G), the measure algebra M(G), the algebra LUC(G)*, etc. We show that for any of these von Neumann algebras, say ℳ, the cardinal number dec(ℳ) and a certain cardinal level of the Mazur property of ℳ* are completely encoded in the underlying group structure. In fact, they can be expressed precisely by two dual cardinal invariants of G: the compact covering number κ(G) of G and the least cardinality ᙭(G) of an open basis at the identity of G. We also present an application of the Mazur property of higher level to the topological centre problem for the Banach algebra A(G)**.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


1971 ◽  
Vol 23 (5) ◽  
pp. 849-856 ◽  
Author(s):  
P. K. Tam

The following (so-called unitary equivalence) problem is of paramount importance in the theory of operators: given two (bounded linear) operators A1, A2 on a (complex) Hilbert space , determine whether or not they are unitarily equivalent, i.e., whether or not there is a unitary operator U on such that U*A1U = A2. For normal operators this question is completely answered by the classical multiplicity theory [7; 11]. Many authors, in particular, Brown [3], Pearcy [9], Deckard [5], Radjavi [10], and Arveson [1; 2], considered the problem for non-normal operators and have obtained various significant results. However, most of their results (cf. [13]) deal only with operators which are of type I in the following sense [12]: an operator, A, is of type I (respectively, II1, II∞, III) if the von Neumann algebra generated by A is of type I (respectively, II1, II∞, III).


1985 ◽  
Vol 37 (4) ◽  
pp. 635-643 ◽  
Author(s):  
A. K. Holzherr

Let G be a locally compact group and ω a normalized multiplier on G. Denote by V(G) (respectively by V(G, ω)) the von Neumann algebra generated by the regular representation (respectively co-regular representation) of G. Kaniuth [6] and Taylor [14] have characterized those G for which the maximal type I finite central projection in V(G) is non-zero (respectively the identity operator in V(G)).In this paper we determine necessary and sufficient conditions on G and ω such that the maximal type / finite central projection in V(G, ω) is non-zero (respectively the identity operator in V(G, ω)) and construct this projection explicitly as a convolution operator on L2(G). As a consequence we prove the following statements are equivalent,(i) V(G, ω) is type I finite,(ii) all irreducible multiplier representations of G are finite dimensional,(iii) Gω (the central extension of G) is a Moore group, that is all its irreducible (ordinary) representations are finite dimensional.


Sign in / Sign up

Export Citation Format

Share Document