Antichains and Finite Sets that Meet all Maximal Chains

1986 ◽  
Vol 38 (3) ◽  
pp. 619-632 ◽  
Author(s):  
J. Ginsburg ◽  
I. Rival ◽  
B. Sands

This paper is inspired by two apparently different ideas. Let P be an ordered set and let M(P) stand for the set of all of its maximal chains. The collection of all sets of the formandwhere x ∊ P, is a subbase for the open sets of a topology on M(P). (Actually, it is easy to check that the B(x) sets themselves form a subbase.) In other words, as M(P) is a subset of the power set 2|p| of P, we can regard M(P) as a subspace of 2|p| with the usual product topology. M. Bell and J. Ginsburg [1] have shown that the topological space M(P) is compact if and only if, for each x ∊ P, there is a finite subset C(x) of P all of whose elements are noncomparable to x and such that {x} ∪ C(x) meets each maximal chain.

2014 ◽  
Vol 79 (4) ◽  
pp. 1120-1132
Author(s):  
CÉDRIC MILLIET

AbstractWe investigate some common points between stable structures and weakly small structures and define a structureMto befineif the Cantor-Bendixson rank of the topological space${S_\varphi }\left( {dc{l^{eq}}\left( A \right)} \right)$is an ordinal for every finite subsetAofMand every formula$\varphi \left( {x,y} \right)$wherexis of arity 1. By definition, a theory isfineif all its models are so. Stable theories and small theories are fine, and weakly minimal structures are fine. For any finite subsetAof a fine groupG, the traces on the algebraic closure$acl\left( A \right)$ofAof definable subgroups ofGover$acl\left( A \right)$which are boolean combinations of instances of an arbitrary fixed formula can decrease only finitely many times. An infinite field with a fine theory has no additive nor multiplicative proper definable subgroups of finite index, nor Artin-Schreier extensions.


1973 ◽  
Vol 38 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Fred Galvin ◽  
Karel Prikry

Definition 1. For a set S and a cardinal κ,In particular, 2ω denotes the power set of the natural numbers and not the cardinal 2ℵ0. We regard 2ω as a topological space with the usual product topology.Definition 2. A set S ⊆ 2ω is Ramsey if there is an M ∈ [ω]ω such that either [M]ω ⊆ S or else [M]ω ⊆ 2ω − S.Erdös and Rado [3, Example 1, p. 434] showed that not every S ⊆ 2ω is Ramsey. In view of the nonconstructive character of the counterexample, one might expect (as Dana Scott has suggested) that all sufficiently definable sets are Ramsey. In fact, our main result (Theorem 2) is that all Borei sets are Ramsey. Soare [10] has applied this result to some problems in recursion theory.The first positive result on Scott's problem was Ramsey's theorem [8, Theorem A]. The next advance was Nash-Williams' generalization of Ramsey's theorem (Corollary 2), which can be interpreted as saying: If S1 and S2 are disjoint open subsets of 2ω, there is an M ∈ [ω]ω such that either [M]ω ⋂ S1 = ∅ or [M]ω ∩ S2 = ⊆. (This is halfway between “clopen sets are Ramsey” and “open sets are Ramsey.”) Then Galvin [4] stated a generalization of Nash-Williams' theorem (Corollary 1) which says, in effect, that open sets are Ramsey; this was discovered independently by Andrzej Ehrenfeucht, Paul Cohen, and probably many others, but no proof has been published.


1970 ◽  
Vol 11 (4) ◽  
pp. 417-420
Author(s):  
Tze-Chien Sun ◽  
N. A. Tserpes

In [6] we announced the following Conjecture: Let S be a locally compact semigroup and let μ be an idempotent regular probability measure on S with support F. Then(a) F is a closed completely simple subsemigroup.(b) F is isomorphic both algebraically and topologically to a paragroup ([2], p.46) X × G × Y where X and Y are locally compact left-zero and right-zero semi-groups respectively and G is a compact group. In X × G × Y the topology is the product topology and the multiplication of any two elements is defined by , x where [y, x′] is continuous mapping from Y × X → G.(c) The induced μ on X × G × Y can be decomposed as a product measure μX × μG× μY where μX and μY are two regular probability measures on X and Y respectively and μG is the normed Haar measure on G.


10.37236/465 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ta Sheng Tan
Keyword(s):  

The trace of a family of sets ${\cal A}$ on a set $X$ is ${\cal A}|_X=\{A\cap X:A\in {\cal A}\}$. If ${\cal A}$ is a family of $k$-sets from an $n$-set such that for any $r$-subset $X$ the trace ${\cal A}|_X$ does not contain a maximal chain, then how large can ${\cal A}$ be? Patkós conjectured that, for $n$ sufficiently large, the size of ${\cal A}$ is at most ${n-k+r-1\choose r-1}$. Our aim in this paper is to prove this conjecture.


1962 ◽  
Vol 14 ◽  
pp. 461-466 ◽  
Author(s):  
Isaac Namioka

Let Δn (n > 0) denote the subset of the Euclidean (n + 1)-dimensional space defined byA subset σ of Δn is called a face if there exists a sequence 0 ≤ i1 ≤ i2 ≤ … < im ≤ n such thatand the dimension of σ is defined to be (n — m). Let denote the union of all faces of Δn of dimensions less than n. A topological space Y is called solid if any continuous map on a closed subspace A of a normal space X into Y can be extended to a map on X into Y. By Tietz's extension theorem, each face of Δn is solid. The present paper is concerned with a generalization of the following theorem which seems well known.


1986 ◽  
Vol 38 (3) ◽  
pp. 538-551 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

1. Introduction. In this paper, the expression topological space will always mean generated space, that is any T1 space X for whichforms a subbasis for the closed subsets of X. This is not at all a severe restriction since generated spaces include all completely regular Hausdorff spaces which contain an arc as well as all 0-dimensional Hausdorff spaces [3, pp. 198-201], [4].The symbol S(X) denotes the semigroup, under composition, of all continuous selfmaps of the topological space X. This paper really grew out of our efforts to determine all those congruences σ on S(X) such that S(X)/σ is isomorphic to S(Y) for some space Y.


1981 ◽  
Vol 33 (2) ◽  
pp. 282-296 ◽  
Author(s):  
Alan D. Taylor

If is a topological space then a sequence (Cα:α < λ) of subsets of is said to be normalized if for every H ⊆ λ there exist disjoint open sets and such thatThe sequence (Cα:α < λ) is said to be separated if there exists a sequence of pairwise disjoint open sets such that for each α < λ. As is customary, we adopt the convention that all sequences (Cα:α < λ) considered are assumed to be relatively discrete as defined in [18, p. 21]: if x ∈ Cα then there exists a neighborhood about x that intersects no Cβ for β ≠ α.


1991 ◽  
Vol 34 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Peter Arpin ◽  
John Ginsburg

AbstractA partially ordered set P is said to have the n-cutset property if for every element x of P, there is a subset S of P all of whose elements are noncomparable to x, with |S| ≤ n, and such that every maximal chain in P meets {x} ∪ S. It is known that if P has the n-cutset property then P has at most 2n maximal elements. Here we are concerned with the extremal case. We let Max P denote the set of maximal elements of P. We establish the following result. THEOREM: Let n be a positive integer. Suppose P has the n-cutset property and that |Max P| = 2n. Then P contains a complete binary tree T of height n with Max T = Max P and such that C ∩ T is a maximal chain in T for every maximal chain C of P. Two examples are given to show that this result does not extend to the case when n is infinite. However the following is shown. THEOREM: Suppose that P has the ω-cutset property and that |Max P| = 2ω. If P — Max P is countable then P contains a complete binary tree of height ω


1968 ◽  
Vol 20 ◽  
pp. 264-271 ◽  
Author(s):  
Takayuki Tamura

Let Q be a quasi-ordered set with respect to ⩽ ; that is, the order ⩽ is reflexive and transitive. An element a of Q is called maximal (minimal) ifa is called greatest (smallest) ifObviously a greatest (smallest) element is maximal (minimal). A greatest (smallest) element in a partially ordered set is unique, but it is not necessarily unique in a quasi-ordered set.


Author(s):  
P. Komjáth

A transversal for a set-system is a one-to-one choice function. A necessary and sufficient condition for the existence of a transversal in the case of finite sets was given by P. Hall (see [4, 3]). The corresponding condition for the case when countably many countable sets are given was conjectured by Nash-Williams and later proved by Damerell and Milner [2]. B. Bollobás and N. Varopoulos stated and proved the following measure theoretic counterpart of Hall's theorem: if (X, μ) is an atomless measure space, ℋ = {Hi: i∈I} is a family of measurable sets with finite measure, λi (i∈I) are non-negative real numbers, then we can choose a subset Ti ⊆ Hi with μ(Ti) = λi and μ(Ti ∩ Ti′) = 0 (i ≠ i′) if and only if μ({U Hi: iεJ}) ≥ Σ{λi: iεJ}: for every finite subset J of I. In this note we generalize this result giving a necessary and sufficient condition for the case when I is countable and X is the union of countably many sets of finite measure.


Sign in / Sign up

Export Citation Format

Share Document