Reconstruction of Entire Functions From Irregularly Spaced Sample Points

1996 ◽  
Vol 48 (4) ◽  
pp. 777-793 ◽  
Author(s):  
Georgi R. Grozev ◽  
Qazi I. Rahman

AbstractLet where {λn}n ∈ Ζ is a sequence of real numbers such that |λn — n| ≤ Δ for some Δ > 0 and all n ∈ ℤ . Extending an obvious property of sin πz to which the function G reduces when Δ = 0 we show that is bounded by a constant independent of n. The result is then applied to a problem concerning derivative sampling in one and several variables.

2010 ◽  
Vol 53 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Maxim R. Burke

AbstractLet f : ℝn → ℝ be C∞ and let h: ℝn → ℝ be positive and continuous. For any unbounded nondecreasing sequence ﹛ck﹜ of nonnegative real numbers and for any sequence without accumulation points ﹛xm﹜ in ℝn, there exists an entire function g : ℂn → ℂ taking real values on ℝn such thatThis is a version for functions of several variables of the case n = 1 due to L. Hoischen.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


2021 ◽  
Vol 13 (3) ◽  
pp. 851-861
Author(s):  
S.Ya. Yanchenko ◽  
O.Ya. Radchenko

In the paper, we investigates the isotropic Nikol'skii-Besov classes $B^r_{p,\theta}(\mathbb{R}^d)$ of non-periodic functions of several variables, which for $d = 1$ are identical to the classes of functions with a dominant mixed smoothness $S^{r}_{p,\theta}B(\mathbb{R})$. We establish the exact-order estimates for the approximation of functions from these classes $B^r_{p,\theta}(\mathbb{R}^d)$ in the metric of the Lebesgue space $L_q(\mathbb{R}^d)$, by entire functions of exponential type with some restrictions for their spectrum in the case $1 \leqslant p \leqslant q \leqslant \infty$, $(p,q)\neq \{(1,1), (\infty, \infty)\}$, $d\geq 1$. In the case $2<p=q<\infty$, $d=1$, the established estimate is also new for the classes $S^{r}_{p,\theta}B(\mathbb{R})$.


Sign in / Sign up

Export Citation Format

Share Document