mixed smoothness
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 13 (3) ◽  
pp. 851-861
Author(s):  
S.Ya. Yanchenko ◽  
O.Ya. Radchenko

In the paper, we investigates the isotropic Nikol'skii-Besov classes $B^r_{p,\theta}(\mathbb{R}^d)$ of non-periodic functions of several variables, which for $d = 1$ are identical to the classes of functions with a dominant mixed smoothness $S^{r}_{p,\theta}B(\mathbb{R})$. We establish the exact-order estimates for the approximation of functions from these classes $B^r_{p,\theta}(\mathbb{R}^d)$ in the metric of the Lebesgue space $L_q(\mathbb{R}^d)$, by entire functions of exponential type with some restrictions for their spectrum in the case $1 \leqslant p \leqslant q \leqslant \infty$, $(p,q)\neq \{(1,1), (\infty, \infty)\}$, $d\geq 1$. In the case $2<p=q<\infty$, $d=1$, the established estimate is also new for the classes $S^{r}_{p,\theta}B(\mathbb{R})$.


2021 ◽  
Vol 104 (4) ◽  
pp. 28-34
Author(s):  
K.A. Bekmaganbetov ◽  
◽  
K.Ye. Kervenev ◽  
Ye. Toleugazy ◽  
◽  
...  

The theory of embedding of spaces of differentiable functions studies the important relations of differential (smoothness) properties of functions in various metrics and has a wide application in the theory of boundary value problems of mathematical physics, approximation theory, and other fields of mathematics. In this article, we prove the embedding theorems for anisotropic spaces Nikol’skii-Besov with a generalized mixed smoothness and mixed metric, and anisotropic Lorentz spaces. The proofs of the obtained results are based on the inequality of different metrics for trigonometric polynomials in Lebesgue spaces with mixed metrics and interpolation properties of the corresponding spaces.


2021 ◽  
Vol 37 (3) ◽  
pp. 291-320
Author(s):  
Dinh Dũng ◽  
Van Kien Nguyen ◽  
Mai Xuan Thao

The purpose of the present paper is to study the computation complexity of deep ReLU neural networks to approximate functions in H\"older-Nikol'skii spaces of mixed smoothness $H_\infty^\alpha(\mathbb{I}^d)$ on the unit cube $\mathbb{I}^d:=[0,1]^d$. In this context, for any function $f\in H_\infty^\alpha(\mathbb{I}^d)$, we explicitly construct nonadaptive and adaptive deep ReLU neural networks having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, and prove dimension-dependent bounds for the computation complexity of this approximation, characterized by the size and the depth of this deep ReLU neural network, explicitly in $d$ and $\varepsilon$. Our results show the advantage of the adaptive method of approximation by deep ReLU neural networks over nonadaptive one.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Felix Hummel

AbstractThe sample paths of white noise are proved to be elements of certain Besov spaces with dominating mixed smoothness. Unlike in isotropic spaces, here the regularity does not get worse with increasing space dimension. Consequently, white noise is actually much smoother than the known sharp regularity results in isotropic spaces suggest. An application of our techniques yields new results for the regularity of solutions of Poisson and heat equation on the half space with boundary noise. The main novelty is the flexible treatment of the interplay between the singularity at the boundary and the smoothness in tangential, normal and time direction.


2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Martin Schäfer ◽  
Tino Ullrich ◽  
Béatrice Vedel

AbstractIn this paper we introduce new function spaces which we call anisotropic hyperbolic Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic Littlewood-Paley analysis involving an anisotropy vector only occurring in the smoothness weights. Such spaces provide a general and natural setting in order to understand what kind of anisotropic smoothness can be described using hyperbolic wavelets (in the literature also sometimes called tensor-product wavelets), a wavelet class which hitherto has been mainly used to characterize spaces of dominating mixed smoothness. A centerpiece of our present work are characterizations of these new spaces based on the hyperbolic wavelet transform. Hereby we treat both, the standard approach using wavelet systems equipped with sufficient smoothness, decay, and vanishing moments, but also the very simple and basic hyperbolic Haar system. The second major question we pursue is the relationship between the novel hyperbolic spaces and the classical anisotropic Besov–Lizorkin-Triebel scales. As our results show, in general, both approaches to resolve an anisotropy do not coincide. However, in the Sobolev range this is the case, providing a link to apply the newly obtained hyperbolic wavelet characterizations to the classical setting. In particular, this allows for detecting classical anisotropies via the coefficients of a universal hyperbolic wavelet basis, without the need of adaption of the basis or a-priori knowledge on the anisotropy.


Author(s):  
Felix Hummel

AbstractWe study elliptic and parabolic boundary value problems in spaces of mixed scales with mixed smoothness on the half-space. The aim is to solve boundary value problems with boundary data of negative regularity and to describe the singularities of solutions at the boundary. To this end, we derive mapping properties of Poisson operators in mixed scales with mixed smoothness. We also derive $$\mathcal {R}$$ R -sectoriality results for homogeneous boundary data in the case that the smoothness in normal direction is not too large.


Sign in / Sign up

Export Citation Format

Share Document