scholarly journals On Duo Rings

1960 ◽  
Vol 3 (2) ◽  
pp. 167-172 ◽  
Author(s):  
G. Thierrin

Following E. H. Feller [l], a ring R is called a duo ring if every one-sided ideal of R is a two-sided ideal.In the first part of this paper, we give some properties of duo rings and we show that the set of the nilpotent elements of a duo ring R is an ideal, the intersection of the completely prime ideals of R.It is easy to see that every duo ring is a subdirect sum of subdirectly irreducible duo rings. We give in the second part of this paper a characterization of the subdirectly irreducible duo rings. This characterization is quite similar to the characterization of the subdirectly irreducible commutative rings, due to N. H. McCoy [2], whose methods we use.

Author(s):  
Mohammed Issoual

Let [Formula: see text] be a group with identity [Formula: see text] and [Formula: see text] be [Formula: see text]-graded commutative ring with [Formula: see text] In this paper, we introduce and study the graded versions of 1-absorbing prime ideal. We give some properties and characterizations of these ideals in graded ring, and we give a characterization of graded 1-absorbing ideal the idealization [Formula: see text]


1979 ◽  
Vol 28 (4) ◽  
pp. 423-426 ◽  
Author(s):  
M. Rimmer ◽  
K. R. Pearson

AbstractLet R be a commutative ring with an automorphism ∞ of finite order n. An element f of the skew polynomial ring R[x, α] is nilpotent if and only if all coefficients of fn are nilpotent. (The case n = 1 is the well-known description of the nilpotent elements of the ordinary polynomial ring R[x].) A characterization of the units in R[x, α] is also given.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


1983 ◽  
Vol 6 (1) ◽  
pp. 119-124
Author(s):  
Hazar Abu-Khuzam ◽  
Adil Yaqub

LetRbe a ring and letNdenote the set of nilpotent elements ofR. LetZdenote the center ofR. Suppose that (i)Nis commutative, (ii) for everyxinRthere existsx′ϵ<x>such thatx−x2x′ϵN, where<x>denotes the subring generated byx, (iii) for everyx,yinR, there exists an integern=n(x,y)≥1such that both(xy)n−(yx)nand(xy)n+1−(yx)n+1belong toZ. ThenRis commutative and, in fact,Ris isomorphic to a subdirect sum of nil commutative rings and local commutative rings. It is further shown that both conditions in hypothesis (iii) are essential. The proof uses the structure theory of rings along with some earlier results of the authors.


2013 ◽  
Vol 5 (4) ◽  
pp. 527-544
Author(s):  
V. Erdoğdu ◽  
S. Harman

2020 ◽  
Vol 9 (2) ◽  
pp. 80-92
Author(s):  
Chenar Abdul Kareem Ahmed

T.K. Kwak and Y. Lee called a ring R satisfy the commutativity of nilpotent elements at zero[1] if ab = 0 for a, b ∈ N(R) implies ba = 0. For simplicity, a ring R is called CNZ if it satisfies the commutativity of nilpotent elements at zero. In this paper we study an extension of a CNZ ring with its endomorphism. An endomorphism α of a ring R is called strong right ( resp., left) CNZ if whenever aα(b) = 0(resp., α(a)b = 0 ) for a, b ∈ N(R) ba = 0. A ring R is called strong right (resp., left) α-CNZ if there exists a strong right (resp., left) CNZ endomorphism α of R, and the ring R is called strong α- CNZ if R is both strong left and right α- CNZ. Characterization of strong α- CNZ rings and their related properties including extensions are investigated . In particular, it’s shown that a ring R is reduced if and only if U2(R) is a CNZ ring. Furthermore extensions of strong α- CNZ rings are studied.


Sign in / Sign up

Export Citation Format

Share Document