A Note on Coverings of En by Convex Sets

1967 ◽  
Vol 10 (5) ◽  
pp. 669-673 ◽  
Author(s):  
J.H.H. Chalk

Let (x1, x2, …, xn) denote the coordinates of a point of Euclidean n-space En. Let be a set of n+1 points of En with the property thatform a linearly independent set and define a lattice Λ of pointsby allowing u1, …, un to take all integer values.

1960 ◽  
Vol 3 (2) ◽  
pp. 173-184 ◽  
Author(s):  
H. W. Ellis ◽  
D. G. Kuehner

In a finite dimensional vector space V a set xi, i = 1, 2, …, n of vectors of V is said to be a basis, base, or coordinate system for V if the vectors xi are linearly independent and if each vector in V is a linear combination of the elements x1 with real coefficients. If a topology for V is defined in terms of a norm ||.|| then {xi} is a basis for V if and only if to each x ϵ V corresponds a unique set of constants ai such thatIn infinite dimensional normed vector spaces the above concepts of basis have different generalizations. The first or algebraic definition gives a Hamel basis which is a maximal linearly independent set [l, p. 2]. We shall be interested in the other or topological definition.


1995 ◽  
Vol 27 (4) ◽  
pp. 931-942 ◽  
Author(s):  
Ilya S. Molchanov ◽  
Edward Omey ◽  
Eugene Kozarovitzky

A set-valued analog of the elementary renewal theorem for Minkowski sums of random closed sets is considered. The corresponding renewal function is defined as where are Minkowski (element-wise) sums of i.i.d. random compact convex sets. In this paper we determine the limit of H(tK)/t as t tends to infinity. For K containing the origin as an interior point, where hK(u) is the support function of K and is the set of all unit vectors u with EhA(u) > 0. Other set-valued generalizations of the renewal function are also suggested.


Author(s):  
D. J. A. Welsh

AbstractKruskal's theorem for obtaining a minimal (maximal) spanning tree of a graph is shown to be a special case of a more general theorem for matroid spaces in which each element of the matroid has an associated weight. Since any finite subset of a vector space can be regarded as a matroid space this theorem gives an easy method of selecting a linearly independent set of vectors of minimal (maximal) weight.


1962 ◽  
Vol 14 ◽  
pp. 597-601 ◽  
Author(s):  
J. Kiefer

The main object of this paper is to prove the following:Theorem. Let f1, … ,fk be linearly independent continuous functions on a compact space. Then for 1 ≤ s ≤ k there exist real numbers aij, 1 ≤ i ≤ s, 1 ≤ j ≤ k, with {aij, 1 ≤ i, j ≤ s} n-singular, and a discrete probability measure ε*on, such that(a) the functions gi = Σj=1kaijfj 1 ≤ i ≤ s, are orthonormal (ε*) to the fj for s < j ≤ k;(b)The result in the case s = k was first proved in (2). The result when s < k, which because of the orthogonality condition of (a) is more general than that when s = k, was proved in (1) under a restriction which will be discussed in § 3. The present proof does not require this ad hoc restriction, and is more direct in approach than the method of (2) (although involving as much technical detail as the latter in the case when the latter applies).


Author(s):  
V. Krishna Kumar

SynopsisThe fourth-order equation considered isConditions are given on the coefficients r, p and q which ensure that this differential equation (*) is in the strong limit-2 case at ∞, i.e. is limit-2 at ∞. This implies that (*) has exactly two linearly independent solutions which are in the integrable-square space ℒ2(0, ∞) for all complex numbers λ with im [λ] ≠ 0. Additionally the conditions imply that self-adjoint operators generated by M[·] in ℒ2(0, ∞) are semi-bounded below. The results obtained are applied to the case when the coefficients r, p and q are powers of x ∈ [0, ∞).


2000 ◽  
Vol 65 (3) ◽  
pp. 969-978 ◽  
Author(s):  
Jean A. Larson

AbstractSuppose that α = γ + δ where γ ≥ δ > 0. Then there is a graph which has no independent set of order type and has no pentagram (a pentagram is a set of five points with all pairs joined by edges). In the notation of Erdős and Rado. who generalized Ramsey's Theorem to this setting.


1974 ◽  
Vol 17 (1) ◽  
pp. 81-87 ◽  
Author(s):  
C. J. Smyth

LetP1, P2…, pN be N points in the unit s-dimensional closed square Q = [0, 1]s. For any measurable set S ⊆ Q, we define δ(S), the discrepancy of S, by , where V(S) is the s-dimensional volume of S, and n(S), is the number of indices i for which pi∈S. Let , where the supermum is taken over all s-balls B ∈ Q, and , the supermum in this case being taken over all convex sets C ∈ Q. Clearly Dc ≧ Dk. In this paper we establish Theorem , where φ1is a constant depending only on s.


1969 ◽  
Vol 21 ◽  
pp. 235-249 ◽  
Author(s):  
Meira Lavie

In this paper we deal with the number of zeros of a solution of the nth order linear differential equation1.1where the functions pj(z) (j = 0, 1, …, n – 2) are assumed to be regular in a given domain D of the complex plane. The differential equation (1.1) is called disconjugate in D, if no (non-trivial) solution of (1.1) has more than (n – 1) zeros in D. (The zeros are counted by their multiplicity.)The ideas of this paper are related to those of Nehari (7; 9) on second order differential equations. In (7), he pointed out the following basic relationship. The function1.2where y1(z) and y2(z) are two linearly independent solutions of1.3is univalent in D, if and only if no solution of equation(1.3) has more than one zero in D, i.e., if and only if(1.3) is disconjugate in D.


Author(s):  
P. A. P. Moran

Consider bounded sets of points in a Euclidean space Rq of q dimensions. Let h(t) be a continuous increasing function, positive for t>0, and such that h(0) = 0. Then the Hausdroff measure h–mE of a set E in Rq, relative to the function h(t), is defined as follows. Let ε be a small positive number and suppose E is covered by a finite or enumerably infinite sequence of convex sets {Ui} (open or closed) of diameters di less than or equal to ε. Write h–mεE = greatest lower bound for any such sequence {Ui}. Then h–mεE is non-decreasing as ε tends to zero. We define


1965 ◽  
Vol 5 (4) ◽  
pp. 453-462 ◽  
Author(s):  
R. P. Bambah ◽  
Alan Woods ◽  
Hans Zassenhaus

Let K be a bounded, open convex set in euclidean n-space Rn, symmetric in the origin 0. Further let L be a lattice in Rn containing 0 and put extended over all positive real numbers ui for which uiK contains i linearly independent points of L. Denote the Jordan content of K by V(K) and the determinant of L by d(L). Minkowski's second inequality in the geometry of numbers states that Minkowski's original proof has been simplified by Weyl [6] and Cassels [7] and a different proof hasbeen given by Davenport [1].


Sign in / Sign up

Export Citation Format

Share Document