Counterexamples to Two Problems on One-Relator Groups

1976 ◽  
Vol 19 (3) ◽  
pp. 363-364 ◽  
Author(s):  
J. Fischer

In [2] G. Baumslag presents a list of twenty-three unsolved problems on one-relator groups. We give counterexamples to two of them.Problem 5 asks whether a maximal locally free subgroup of a one-relator group always has finite “rank” (G has “rank” k if each finitely generated subgroup of G is contained in a k-generator subgroup of G).

1987 ◽  
Vol 36 (1) ◽  
pp. 153-160 ◽  
Author(s):  
R. G. Burns ◽  
A. Karrass ◽  
D. Solitar

An example is given of an infinite cyclic extension of a free group of finite rank in which not every finitely generated subgroup is finitely separable. This answers negatively the question of Peter Scott as to whether in all finitely generated 3-manifold groups the finitely generated subgroups are finitely separable. In the positive direction it is shown that in knot groups and one-relator groups with centre, the finitely generated normal subgroups are finitely separable.


1995 ◽  
Vol 05 (02) ◽  
pp. 199-204 ◽  
Author(s):  
STEPHEN G. BRICK

We study the property of tame combability for groups. We show that quasi-isometries preserve this property. We prove that an amalgamation, A *C B, where C is finitely generated, is tame combable iff both A and B are. An analogous result is obtained for HNN extensions. And we show that all one-relator groups are tame combable.


Author(s):  
Jan Okniński

AbstractWe show that the growth function of a finitely generated linear semigroup S ⊆ Mn(K) is controlled by its behaviour on finitely many cancellative subsemigroups of S. If the growth of S is polynomially bounded, then every cancellative subsemigroup T of S has a group of fractions G ⊆ Mn (K) which is nilpotent-by-finite and of finite rank. We prove that the latter condition, strengthened by the hypothesis that every such G has a finite unipotent radical, is sufficient for S to have a polynomial growth. Moreover, the degree of growth of S is then bounded by a polynomial f(n, r) in n and the maximal degree r of growth of finitely generated cancellative T ⊆ S.


1988 ◽  
Vol 31 (3) ◽  
pp. 374-379 ◽  
Author(s):  
Kenneth G. Wolfson

AbstractA prime Goldie ring K, in which each finitely generated left ideal is principal is the endomorphism ring E(F, A) of a free module A, of finite rank, over an Ore domain F. We determine necessary and sufficient conditions to insure that whenever K ≅ E(F, A) ≅ E(G, B) (with A and B free and finitely generated over domains F and G) then (F, A) is semi-linearly isomorphic to (G, B). We also show, by example, that it is possible for K ≅ E(F, A ) ≅ E(G, B), with F and G, not isomorphic.


2007 ◽  
Vol 17 (08) ◽  
pp. 1611-1634 ◽  
Author(s):  
ABDÓ ROIG ◽  
ENRIC VENTURA ◽  
PASCAL WEIL

The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem — to decide whether a word is an element of some basis of the free group — and the free factor problem can also be solved in polynomial time.


1985 ◽  
Vol 98 (3) ◽  
pp. 437-445 ◽  
Author(s):  
P. H. Kropholler

The cohomology of finitely generated metabelian groups has been studied in a series of papers by Bieri, Groves, and Strebel [2, 3, 4]. In particular, Bieri and Groves [2] have shown that every metabelian group of type (FP)∞ is of finite rank, and so is virtually of type (FP). The purpose of the present paper is to provide a generalization of this result and to use our methods to prove the existence of a pathological class of finitely generated soluble groups.


Author(s):  
Frédérique Bassino ◽  
Cyril Nicaud ◽  
Pascal Weil

We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].


2018 ◽  
Vol 21 (4) ◽  
pp. 583-591
Author(s):  
Daniel Palacín

AbstractIt is proven that an infinite finitely generated group cannot be elementarily equivalent to an ultraproduct of finite groups of a given Prüfer rank. Furthermore, it is shown that an infinite finitely generated group of finite Prüfer rank is not pseudofinite.


1976 ◽  
Vol 28 (6) ◽  
pp. 1302-1310 ◽  
Author(s):  
Brian Hartley

In [1], Bachmuth and Mochizuki conjecture, by analogy with a celebrated result of Tits on linear groups [8], that a finitely generated group of automorphisms of a finitely generated soluble group either contains a soluble subgroup of finite index (which may of course be taken to be normal) or contains a non-abelian free subgroup. They point out that their conjecture holds for nilpotent-by-abelian groups and in some other cases.


Sign in / Sign up

Export Citation Format

Share Document