On Uniform Convergence of Continuous Functions and Topological Convergence of Sets

1983 ◽  
Vol 26 (4) ◽  
pp. 418-424 ◽  
Author(s):  
Gerald Beer

AbstractLet X and Y be metric spaces. This paper considers the relationship between uniform convergence in C(X, Y) and topological convergence of functions in C(X, Y), viewed as subsets of X×Y. In general, uniform convergence in C(X, Y) implies Hausdorff metric convergence which, in turn, implies topological convergence, but if X and Y are compact, then all three notions are equivalent. If C([0, 1], Y) is nontrivial arid topological convergence in C(X, Y) implies uniform converger ce then X is compact. Theorem: Let X be compact and Y be loyally compact but noncompact. Then topological convergence in C(X, Y) implies uniform convergence if and only if X has finitely many components. We also sharpen a related result of Naimpally.

1985 ◽  
Vol 28 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Gerald Beer

AbstractLet C(X, Y) denote the set of continuous functions from a metric space X to a metric space Y. Viewing elements of C(X, Y) as closed subsets of X × Y, we say {fn} converges topologically to f if Li fn = Lsfn = f. If X is connected, then topological convergence in C(X,R) does not imply pointwise convergence, but if X is locally connected and Y is locally compact, then topological convergence in C(X, Y) is equivalent to uniform convergence on compact subsets of X. Pathological aspects of topological convergence for seemingly nice spaces are also presented, along with a positive Baire category result.


1986 ◽  
Vol 29 (4) ◽  
pp. 463-468 ◽  
Author(s):  
Gerald Beer

AbstractLet 〈X, dx〉 and 〈Y, dY〉 be metric spaces and let hp denote Hausdorff distance in X x Y induced by the metric p on X x Y given by p[(x1, y1), (x2, y2)] = max ﹛dx(x1, x2),dY(y1, y2)﹜- Using the fact that hp when restricted to the uniformly continuous functions from X to Y induces the topology of uniform convergence, we exhibit a natural compactness criterion for C(X, Y) when X is compact and Y is complete.


Filomat ◽  
2010 ◽  
Vol 24 (4) ◽  
pp. 63-75 ◽  
Author(s):  
Agata Caserta ◽  
Maio Di ◽  
L'ubica Holá

In this paper we continue, in the realm of metric spaces, the study of exhaustiveness and weak exhaustiveness at a point of a net of functions initiated by Gregoriades and Papanastassiou in 2008. We prove that exhaustiveness at every point of a net of pointwise convergent functions is equivalent to uniform convergence on compacta. We extend exhaustiveness-type properties to subsets. First, we introduce the notion of strong exhaustiveness at a subset B for sequences of functions and prove its equivalence with strong exhaustiveness at P0 (B) of the sequence of the direct image maps, where the hypersets are equipped with the Hausdorff metric. Furthermore, we show that the notion of strong-weak exhaustiveness at a subset is the proper tool to investigate when the limit of a pointwise convergent sequence of functions fulfills the strong uniform continuity property, a new pregnant form of uniform continuity discovered by Beer and Levi in 2009.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Yang ◽  
Sheng-Gang Li ◽  
William Zhu ◽  
Xiao-Fei Yang ◽  
Ahmed Mostafa Khalil

An L , M -fuzzy topological convergence structure on a set X is a mapping which defines a degree in M for any L -filter (of crisp degree) on X to be convergent to a molecule in L X . By means of L , M -fuzzy topological neighborhood operators, we show that the category of L , M -fuzzy topological convergence spaces is isomorphic to the category of L , M -fuzzy topological spaces. Moreover, two characterizations of L -topological spaces are presented and the relationship with other convergence spaces is concretely constructed.


2009 ◽  
Vol 29 (4) ◽  
pp. 1141-1161
Author(s):  
S. FENLEY ◽  
R. FERES ◽  
K. PARWANI

AbstractLet (M,ℱ) be a compact codimension-one foliated manifold whose leaves are endowed with Riemannian metrics, and consider continuous functions on M that are harmonic along the leaves of ℱ. If every such function is constant on leaves, we say that (M,ℱ) has the Liouville property. Our main result is that codimension-one foliated bundles over compact negatively curved manifolds satisfy the Liouville property. A related result for ℝ-covered foliations is also established.


1908 ◽  
Vol 28 ◽  
pp. 249-258
Author(s):  
W. H. Young

§ 1. THE usual method of proving that a function defined as the limit of a sequence of continuous functions is continuous is by proving that the convergence is uniform. This method may fail owing to the presence of points at which the convergence is non-uniform although the limiting function is continuous. In such a case it would be necessary to apply a further test, e.g. that of Arzelà (“uniform convergence by segments”).In some cases the continuity may be proved directly by means of a totally different principle, without reference to modes of convergence at all. It is, in fact, a necessary and sufficient condition for the continuity of a function that it should be possible to express it at the same time as the limit of a monotone ascending and of a monotone descending sequence of continuous functions.


1979 ◽  
Vol 20 (3) ◽  
pp. 367-375 ◽  
Author(s):  
G.J. Logan

A closure algebra is a set X with a closure operator C defined on it. It is possible to construct a topology τ on MX, the family of maximal, proper, closed subsets of X, and then to examine the relationship between the algebraic structure of (X, C) and the topological structure of the dual space (MX τ) This paper describes the algebraic conditions which are necessary and sufficient for the dual space to be separable metric and metric respectively.


Sign in / Sign up

Export Citation Format

Share Document