On an Upper Bound for the Heat Kernel on SU*(2n)/ Sp(n)

1994 ◽  
Vol 37 (3) ◽  
pp. 408-418 ◽  
Author(s):  
P. Sawyer

AbstractJean-Philippe Anker made an interesting conjecture in [2] about the growth of the heat kernel on symmetric spaces of noncompact type. For any symmetric space of noncompact type, we can writewhere ϕ0 is the Legendre function and q, "the dimension at infinity", is chosen such that limt—>∞Vt(x) = 1 for all x. Anker's conjecture can be stated as follows: there exists a constant C > 0 such thatwhere is the set of positive indivisible roots. The behaviour of the function ϕ0 is well known (see [1]).The main goal of this paper is to establish the conjecture for the spaces SU*(2n)/ Sp(n).

1997 ◽  
Vol 49 (2) ◽  
pp. 360-373 ◽  
Author(s):  
P. Sawyer

AbstractIn [1], Jean-Philippe Anker conjectures an upper bound for the heat kernel of a symmetric space of noncompact type. We show in this paper that his prediction is verified for the space of positive definite n × n real matrices.


2007 ◽  
Vol 50 (2) ◽  
pp. 291-312 ◽  
Author(s):  
Rudra P. Sarkar ◽  
Jyoti Sengupta

AbstractWe prove Beurling's theorem for rank 1 Riemannian symmetric spaces and relate its consequences with the characterization of the heat kernel of the symmetric space.


2013 ◽  
Vol 10 (04) ◽  
pp. 677-701
Author(s):  
CARLOS ALMADA

We derive L∞–L1 decay rate estimates for solutions of the shifted wave equation on certain symmetric spaces (M, g). The Cauchy problem for the shifted wave operator on these spaces was studied by Helgason, who obtained a closed form for its solution. Our results extend to this new context the classical estimates for the wave equation in ℝn. Then, following an idea from Klainerman, we introduce a new norm based on Lie derivatives with respect to Killing fields on M and we derive an estimate for the case that n = dim M is odd.


1964 ◽  
Vol 4 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Bandana Gupta

This paper deals with a type of Remannian space Vn (n ≧ 2) for which the first covariant dervative of Weyl's projective curvature tensor is everywhere zero, that is where comma denotes covariant differentiation with respect to the metric tensor gij of Vn. Such a space has been called a projective-symmetric space by Gy. Soós [1]. We shall denote such an n-space by ψn. It will be proved in this paper that decomposable Projective-Symmetric spaces are symmetric in the sense of Cartan. In sections 3, 4 and 5 non-decomposable spaces of this kind will be considered in relation to other well-known classes of Riemannian spaces defined by curvature restrictions. In the last section the question of the existence of fields of concurrent directions in a ψ will be discussed.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250001 ◽  
Author(s):  
MING LIAO ◽  
LONGMIN WANG

We study the large time limiting properties of a Lévy process in a symmetric space of noncompact type, both pathwise and in terms of distribution.


2007 ◽  
Vol 83 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ara Basmajian ◽  
Mahmoud Zeinalian

abstractWe show that the group of conformal homeomorphisms of the boundary of a rank one symmetric space (except the hyperbolic plane) of noncompact type acts as a maximal convergence group. Moreover, we show that any family of uniformly quasiconformal homeomorphisms has the convergence property. Our theorems generalize results of Gehring and Martin in the real hyperbolic case for Möbius groups. As a consequence, this shows that the maximal convergence subgroups of the group of self homeomorphisms of the d–sphere are not unique up to conjugacy. Finally, we discuss some implications of maximality.


Author(s):  
Jean-Michel Bismut

This book uses the hypoelliptic Laplacian to evaluate semisimple orbital integrals in a formalism that unifies index theory and the trace formula. The hypoelliptic Laplacian is a family of operators that is supposed to interpolate between the ordinary Laplacian and the geodesic flow. It is essentially the weighted sum of a harmonic oscillator along the fiber of the tangent bundle, and of the generator of the geodesic flow. In this book, semisimple orbital integrals associated with the heat kernel of the Casimir operator are shown to be invariant under a suitable hypoelliptic deformation, which is constructed using the Dirac operator of Kostant. Their explicit evaluation is obtained by localization on geodesics in the symmetric space, in a formula closely related to the Atiyah-Bott fixed point formulas. Orbital integrals associated with the wave kernel are also computed. Estimates on the hypoelliptic heat kernel play a key role in the proofs, and are obtained by combining analytic, geometric, and probabilistic techniques. Analytic techniques emphasize the wavelike aspects of the hypoelliptic heat kernel, while geometrical considerations are needed to obtain proper control of the hypoelliptic heat kernel, especially in the localization process near the geodesics. Probabilistic techniques are especially relevant, because underlying the hypoelliptic deformation is a deformation of dynamical systems on the symmetric space, which interpolates between Brownian motion and the geodesic flow. The Malliavin calculus is used at critical stages of the proof.


Author(s):  
SANJIV KUMAR GUPTA ◽  
KATHRYN E. HARE

Abstract Let $G/K$ be an irreducible symmetric space, where G is a noncompact, connected Lie group and K is a compact, connected subgroup. We use decay properties of the spherical functions to show that the convolution product of any $r=r(G/K)$ continuous orbital measures has its density function in $L^{2}(G)$ and hence is an absolutely continuous measure with respect to the Haar measure. The number r is approximately the rank of $G/K$ . For the special case of the orbital measures, $\nu _{a_{i}}$ , supported on the double cosets $Ka_{i}K$ , where $a_{i}$ belongs to the dense set of regular elements, we prove the sharp result that $\nu _{a_{1}}\ast \nu _{a_{2}}\in L^{2},$ except for the symmetric space of Cartan class $AI$ when the convolution of three orbital measures is needed (even though $\nu _{a_{1}}\ast \nu _{a_{2}}$ is absolutely continuous).


Sign in / Sign up

Export Citation Format

Share Document