On the Garsia Lie Idempotent

2005 ◽  
Vol 48 (3) ◽  
pp. 445-454 ◽  
Author(s):  
Frédéric Patras ◽  
Christophe Reutenauer ◽  
Manfred Schocker

AbstractThe orthogonal projection of the free associative algebra onto the free Lie algebra is afforded by an idempotent in the rational group algebra of the symmetric group Sn, in each homogenous degree n. We give various characterizations of this Lie idempotent and show that it is uniquely determined by a certain unit in the group algebra of Sn−1. The inverse of this unit, or, equivalently, the Gram matrix of the orthogonal projection, is described explicitly. We also show that the Garsia Lie idempotent is not constant on descent classes (in fact, not even on coplactic classes) in Sn.

Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


2003 ◽  
Vol 75 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Manfred Schocker

AbstractThe higher Lie characters of the symmetric group Sn arise from the Poincaré-Birkhoff-Witt basis of the free associative algebra. They are indexed by the partitions of n and sum up to the regular character of Sn. A combinatorial description of the multiplicities of their irreducible components is given. As a special case the Kraśkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.


10.37236/1878 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Peter McNamara ◽  
Christophe Reutenauer

Because they play a role in our understanding of the symmetric group algebra, Lie idempotents have received considerable attention. The Klyachko idempotent has attracted interest from combinatorialists, partly because its definition involves the major index of permutations. For the symmetric group $S_n$, we look at the symmetric group algebra with coefficients from the field of rational functions in $n$ variables $q_1, \ldots, q_n$. In this setting, we can define an $n$-parameter generalization of the Klyachko idempotent, and we show it is a Lie idempotent in the appropriate sense. Somewhat surprisingly, our proof that it is a Lie element emerges from Stanley's theory of $P$-partitions.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Laurent Poinsot

The famous Poincaré-Birkhoff-Witt theorem states that a Lie algebra, free as a module, embeds into its associative envelope—its universal enveloping algebra—as a sub-Lie algebra for the usual commutator Lie bracket. However, there is another functorial way—less known—to associate a Lie algebra to an associative algebra and inversely. Any commutative algebra equipped with a derivation , that is, a commutative differential algebra, admits a Wronskian bracket under which it becomes a Lie algebra. Conversely, to any Lie algebra a commutative differential algebra is universally associated, its Wronskian envelope, in a way similar to the associative envelope. This contribution is the beginning of an investigation of these relations between Lie algebras and differential algebras which is parallel to the classical theory. In particular, we give a sufficient condition under which a Lie algebra may be embedded into its Wronskian envelope, and we present the construction of the free Lie algebra with this property.


Sign in / Sign up

Export Citation Format

Share Document