New Examples of Non-Archimedean Banach Spaces and Applications

2012 ◽  
Vol 55 (4) ◽  
pp. 821-829 ◽  
Author(s):  
C. Perez-Garcia ◽  
W. H. Schikhof

AbstractThe study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have t-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm ║ · ║ on c0, equivalent to the canonical supremum norm, without non-zero vectors that are ║ · ║-orthogonal and such that there is a multiplication on c0 making (c0, ║ · ║) into a valued field.

Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter provides some background material on definable sets, definable types, orthogonality to a definable set, and stable domination, especially in the valued field context. It considers more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and describes the definable types concentrating on a stable definable V as an ind-definable set. It also proves a key result that demonstrates definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, it discusses the notion of pseudo-Galois coverings. Every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type.


1988 ◽  
Vol 108 (3-4) ◽  
pp. 371-378
Author(s):  
B. M. Garay

SynopsisIn the Banach space of real sequences which converge to zero with the supremum norm, we construct a parallelisable dynamical system with uniformly-bounded trajectories.


2008 ◽  
Vol 08 (01) ◽  
pp. 1-22 ◽  
Author(s):  
DEIRDRE HASKELL ◽  
YOAV YAFFE

The purpose of this paper is to study an analogue of Hilbert's seventeenth problem for functions over a valued field which are integral definite on some definable set; that is, that map the given set into the valuation ring. We use model theory to exhibit a uniform method, on various theories of valued fields, for deriving an algebraic characterization of such functions. As part of this method we refine the concept of a function being integral at a point, and make it dependent on the relevant class of valued fields. We apply our framework to algebraically closed valued fields, model complete theories of difference and differential valued fields, and real closed valued fields.


2012 ◽  
Vol 12 (01) ◽  
pp. 1250125 ◽  
Author(s):  
SUDESH K. KHANDUJA ◽  
SANJEEV KUMAR

Let (K, v) be a complete rank-1 valued field. In this paper, we extend classical Hensel's Lemma to residually transcendental prolongations of v to a simple transcendental extension K(x) and apply it to prove a generalization of Dedekind's theorem regarding splitting of primes in algebraic number fields. We also deduce an irreducibility criterion for polynomials over rank-1 valued fields which extends already known generalizations of Schönemann Irreducibility Criterion for such fields. A refinement of Generalized Akira criterion proved in Khanduja and Khassa [Manuscripta Math.134(1–2) (2010) 215–224] is also obtained as a corollary of the main result.


1987 ◽  
Vol 52 (2) ◽  
pp. 368-373 ◽  
Author(s):  
S. Heinrich ◽  
C. Ward Henson ◽  
L. C. Moore

In this paper we give a closer analysis of the elementary properties of the Banach spaces C(K), where K is a totally disconnected, compact Hausdorff space, in terms of the Boolean algebra B(K) of clopen subsets of K. In particular we sharpen a result in [4] by showing that if B(K1) and B(K2) satisfy the same sentences with ≤ n alternations of quantifiers, then the same is true of C(K1) and C(K2). As a consequence we show that for each n there exist C(K) spaces which are elementarily equivalent for sentences with ≤ n quantifier alternations, but which are not elementary equivalent in the full sense. Thus the elementary properties of Banach spaces cannot be determined by looking at sentences with a bounded number of quantifier alternations.The notion of elementary equivalence for Banach spaces which is studied here was introduced by the second author [4] and is expressed using the language of positive bounded formulas in a first-order language for Banach spaces. As was shown in [4], two Banach spaces are elementarily equivalent in this sense if and only if they have isometrically isomorphic Banach space ultrapowers (or, equivalently, isometrically isomorphic nonstandard hulls.)We consider Banach spaces over the field of real numbers. If X is such a space, Bx will denote the closed unit ball of X, Bx = {x ϵ X∣ ∣∣x∣∣ ≤ 1}. Given a compact Hausdorff space K, we let C(K) denote the Banach space of all continuous real-valued functions on K, under the supremum norm. We will especially be concerned with such spaces when K is a totally disconnected compact Hausdorff space. In that case B(K) will denote the Boolean algebra of all clopen subsets of K. We adopt the standard notation from model theory and Banach space theory.


2016 ◽  
Vol 81 (2) ◽  
pp. 400-416
Author(s):  
SYLVY ANSCOMBE ◽  
FRANZ-VIKTOR KUHLMANN

AbstractWe extend the characterization of extremal valued fields given in [2] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finitep-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every ℵ1saturated valued field the valuation is a composition of extremal valuations of rank 1.


1999 ◽  
Vol 64 (3) ◽  
pp. 991-1027 ◽  
Author(s):  
Françoise Delon ◽  
Patrick Simonetta

AbstractAn Ax-Kochen-Ershov principle for intermediate structures between valued groups and valued fields.We will consider structures that we call valued B-groups and which are of the form 〈G, B, *, υ〉 where– G is an abelian group,– B is an ordered group,– υ is a valuation denned on G taking its values in B,– * is an action of B on G satisfying: ∀x ϵ G ∀ b ∈ B υ(x * b) = ν(x) · b.The analysis of Kaplanski for valued fields can be adapted to our context and allows us to formulate an Ax-Kochen-Ershov principle for valued B-groups: we axiomatise those which are in some sense existentially closed and also obtain many of their model-theoretical properties. Let us mention some applications:1. Assume that υ(x) = υ(nx) for every integer n ≠ 0 and x ϵ G, B is solvable and acts on G in such a way that, for the induced action, Z[B] ∖ {0} embeds in the automorphism group of G. Then 〈G, B, *, υ〉 is decidable if and only if B is decidable as an ordered group.2. Given a field k and an ordered group B, we consider the generalised power series field k((B)) endowed with its canonical valuation. We consider also the following structure:where k((B))+ is the additive group of k((B)), S is a unary predicate interpreting {Tb ∣ b ϵB}, and ×↾k((B))×S is the multiplication restricted to k((B)) × S, structure which is a reduct of the valued field k((B)) with its canonical cross section. Then our result implies that if B is solvable and decidable as an ordered group, then M is decidable.3. A valued B–group has a residual group and our Ax-Kochen-Ershov principle remains valid in the context of expansions of residual group and value group. In particular, by adding a residual order we obtain new examples of solvable ordered groups having a decidable theory.


Sign in / Sign up

Export Citation Format

Share Document