scholarly journals On the Limiting Weak-type Behaviors for Maximal Operators Associated with Power Weighted Measure

2019 ◽  
Vol 62 (02) ◽  
pp. 313-326 ◽  
Author(s):  
Xianming Hou ◽  
Huoxiong Wu

AbstractLet $\unicode[STIX]{x1D6FD}\geqslant 0$ , let $e_{1}=(1,0,\ldots ,0)$ be a unit vector on $\mathbb{R}^{n}$ , and let $d\unicode[STIX]{x1D707}(x)=|x|^{\unicode[STIX]{x1D6FD}}dx$ be a power weighted measure on $\mathbb{R}^{n}$ . For $0\leqslant \unicode[STIX]{x1D6FC}<n$ , let $M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}$ be the centered Hardy-Littlewood maximal function and fractional maximal functions associated with measure $\unicode[STIX]{x1D707}$ . This paper shows that for $q=n/(n-\unicode[STIX]{x1D6FC})$ , $f\in L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})$ , $$\begin{eqnarray}\displaystyle \lim _{\unicode[STIX]{x1D706}\rightarrow 0+}\unicode[STIX]{x1D706}^{q}\unicode[STIX]{x1D707}(\{x\in \mathbb{R}^{n}:M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}f(x)>\unicode[STIX]{x1D706}\})=\frac{\unicode[STIX]{x1D714}_{n-1}}{(n+\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D707}(B(e_{1},1))}\Vert f\Vert _{L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})}^{q}, &amp; &amp; \displaystyle \nonumber\\ \displaystyle \lim _{\unicode[STIX]{x1D706}\rightarrow 0+}\unicode[STIX]{x1D706}^{q}\unicode[STIX]{x1D707}\left(\left\{x\in \mathbb{R}^{n}:\left|M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}f(x)-\frac{\Vert f\Vert _{L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})}}{\unicode[STIX]{x1D707}(B(x,|x|))^{1-\unicode[STIX]{x1D6FC}/n}}\right|>\unicode[STIX]{x1D706}\right\}\right)=0, &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ which is new and stronger than the previous result even if $\unicode[STIX]{x1D6FD}=0$ . Meanwhile, the corresponding results for the un-centered maximal functions as well as the fractional integral operators with respect to measure $\unicode[STIX]{x1D707}$ are also obtained.

1998 ◽  
Vol 50 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Yong Ding ◽  
Shanzhen Lu

AbstractGiven function Ω on ℝn , we define the fractional maximal operator and the fractional integral operator by and respectively, where 0 < α < n. In this paper we study the weighted norm inequalities of MΩα and TΩα for appropriate α, s and A(p, q) weights in the case that Ω∈ Ls(Sn-1)(s> 1), homogeneous of degree zero.


2019 ◽  
Vol 63 (1) ◽  
pp. 141-156
Author(s):  
Hiroki Saito ◽  
Hitoshi Tanaka ◽  
Toshikazu Watanabe

AbstractBlock decomposition of $L^{p}$ spaces with weighted Hausdorff content is established for $0<p\leqslant 1$ and the Fefferman–Stein type inequalities are shown for fractional integral operators and some variants of maximal operators.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xukui Shao ◽  
Shuangping Tao

In this paper, the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent weak Morrey spaces based on the results of Lebesgue space with variable exponent as the infimum of exponent function p(·) equals 1. The corresponding commutators generated by BMO and Lipschitz functions are considered, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Canqin Tang ◽  
Qing Wu ◽  
Jingshi Xu

By some estimates for the variable fractional maximal operator, the authors prove that the fractional integral operator is bounded and satisfies the weak-type inequality on variable exponent Lebesgue spaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hendra Gunawan ◽  
Denny Ivanal Hakim ◽  
Yoshihiro Sawano ◽  
Idha Sihwaningrum

We prove weak type inequalities for some integral operators, especially generalized fractional integral operators, on generalized Morrey spaces of nonhomogeneous type. The inequality for generalized fractional integral operators is proved by using two different techniques: one uses the Chebyshev inequality and some inequalities involving the modified Hardy-Littlewood maximal operator and the other uses a Hedberg type inequality and weak type inequalities for the modified Hardy-Littlewood maximal operator. Our results generalize the weak type inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces and extend to some singular integral operators. In addition, we also prove the boundedness of generalized fractional integral operators on generalized non-homogeneous Orlicz-Morrey spaces.


2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Hua Wang

In this paper, we first introduce some new classes of weighted amalgam spaces. Then, we give the weighted strong-type and weak-type estimates for fractional integral operators Iγ on these new function spaces. Furthermore, the weighted strong-type estimate and endpoint estimate of linear commutators b,Iγ generated by b and Iγ are established as well. In addition, we are going to study related problems about two-weight, weak-type inequalities for Iγ and b,Iγ on the weighted amalgam spaces and give some results. Based on these results and pointwise domination, we can prove norm inequalities involving fractional maximal operator Mγ and generalized fractional integrals ℒ−γ/2 in the context of weighted amalgam spaces, where 0<γ<n and L is the infinitesimal generator of an analytic semigroup on L2Rn with Gaussian kernel bounds.


1983 ◽  
Vol 24 (2) ◽  
pp. 139-148 ◽  
Author(s):  
C. Nasim

We define the integral operators and asandwhereand Wk, u and Mk, u are the Whittaker's confluent hyper-geometric functions. These operators, in their slightly less general form, have been dealt with in [2] and [4]. There the authors have used the fact that these integral operators can be expressed as compositions of the Kober's fractional integral operators and the modified Laplace operator. Then these operators are inverted accordingly. Generally, this type of technique has been very useful for inverting many kinds of integral equations; and a good account of the procedures involved is given [5].


Sign in / Sign up

Export Citation Format

Share Document