scholarly journals Human SIRT1 associates with mitotic chromatin and contributes to chromosomal condensation

Cell Cycle ◽  
2011 ◽  
Vol 10 (14) ◽  
pp. 2317-2322 ◽  
Author(s):  
Samuel T. Fatoba ◽  
Andrei L. Okorokov
Chromosoma ◽  
2021 ◽  
Author(s):  
Philipp A. Steffen ◽  
Christina Altmutter ◽  
Eva Dworschak ◽  
Sini Junttila ◽  
Attila Gyenesei ◽  
...  

AbstractThe Drosophila Trithorax group (TrxG) protein ASH1 remains associated with mitotic chromatin through mechanisms that are poorly understood. ASH1 dimethylates histone H3 at lysine 36 via its SET domain. Here, we identify domains of the TrxG protein ASH1 that are required for mitotic chromatin attachment in living Drosophila. Quantitative live imaging demonstrates that ASH1 requires AT hooks and the BAH domain but not the SET domain for full chromatin binding in metaphase, and that none of these domains are essential for interphase binding. Genetic experiments show that disruptions of the AT hooks and the BAH domain together, but not deletion of the SET domain alone, are lethal. Transcriptional profiling demonstrates that intact ASH1 AT hooks and the BAH domain are required to maintain expression levels of a specific set of genes, including several involved in cell identity and survival. This study identifies in vivo roles for specific ASH1 domains in mitotic binding, gene regulation, and survival that are distinct from its functions as a histone methyltransferase.


2012 ◽  
Vol 26 (8) ◽  
pp. 857-871 ◽  
Author(s):  
J. P. Fonseca ◽  
P. A. Steffen ◽  
S. Muller ◽  
J. Lu ◽  
A. Sawicka ◽  
...  

2003 ◽  
Vol 100 (23) ◽  
pp. 13241-13246 ◽  
Author(s):  
T. A. Prokhorova ◽  
K. Mowrer ◽  
C. H. Gilbert ◽  
J. C. Walter

Nature ◽  
10.1038/39382 ◽  
1997 ◽  
Vol 389 (6651) ◽  
pp. 640-643 ◽  
Author(s):  
Søren S. L. Andersen ◽  
Anthony J. Ashford ◽  
Rgis Tournebize ◽  
Olivier Gavet ◽  
Andr Sobel ◽  
...  
Keyword(s):  

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Oana Kubinyecz ◽  
Fatima Santos ◽  
Deborah Drage ◽  
Wolf Reik ◽  
Melanie A. Eckersley-Maslin

ABSTRACT Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.


2019 ◽  
Author(s):  
Lise Dauban ◽  
Rémi Montagne ◽  
Agnès Thierry ◽  
Luciana Lazar-Stefanita ◽  
Olivier Gadal ◽  
...  

AbstractUnderstanding how chromatin organizes spatially into chromatid and how sister chromatids are maintained together during mitosis is of fundamental importance in chromosome biology. Cohesin, a member of the Structural Maintenance of Chromosomes (SMC) complex family, holds sister chromatids together 1–3 and promotes long-range intra-chromatid DNA looping 4,5. These cohesin-mediated DNA loops are important for both higher-order mitotic chromatin compaction6,7 and, in some organisms, compartmentalization of chromosomes during interphase into topologically associating domains (TADs) 8,9. Our understanding of the mechanism(s) by which cohesin generates large DNA loops remains incomplete. It involves a combination of molecular partners and active expansion/extrusion of DNA loops. Here we dissect the roles on loop formation of three partners of the cohesin complex: Pds5 10, Wpl1 11 and Eco1 acetylase 12, during yeast mitosis. We identify a new function for Eco1 in negatively regulating cohesin translocase activity, which powers loop extrusion. In the absence of negative regulation, the main barrier to DNA loop expansion appears to be the centromere. Those results provide new insights on the mechanisms regulating cohesin dependent DNA looping.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38102 ◽  
Author(s):  
Dina Dikovskaya ◽  
Guennadi Khoudoli ◽  
Ian P. Newton ◽  
Gaganmeet S. Chadha ◽  
Daniel Klotz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document