scholarly journals Maternal Dppa2 and Dppa4 are dispensable for zygotic genome activation but important for offspring survival

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Oana Kubinyecz ◽  
Fatima Santos ◽  
Deborah Drage ◽  
Wolf Reik ◽  
Melanie A. Eckersley-Maslin

ABSTRACT Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.

2021 ◽  
Author(s):  
Oana Kubinyecz ◽  
Fatima Santos ◽  
Deborah Drage ◽  
Wolf Reik ◽  
Melanie A Eckersley-Maslin

Zygotic Genome Activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance in shifting developmental control from primarily maternal stores in the oocyte to the embryo proper, we know little of the molecular events that initiate ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells (ESCs) have revealed Developmental Pluripotency Associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, while fertile, Dppa2/4 maternal knockout mice had reduced litter sizes, indicating decreased offspring survival. Immunofluorescence and transcriptome analyses of 2-cell embryos revealed while ZGA took place there were subtle defects in embryos lacking maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together our results show that while Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yixuan Low ◽  
Dennis Eng Kiat Tan ◽  
Zhenhua Hu ◽  
Shawn Ying Xuan Tan ◽  
Wee-Wei Tee

Transposable elements (TEs) are mobile genetic sequences capable of duplicating and reintegrating at new regions within the genome. A growing body of evidence has demonstrated that these elements play important roles in host genome evolution, despite being traditionally viewed as parasitic elements. To prevent ectopic activation of TE transposition and transcription, they are epigenetically silenced in most somatic tissues. Intriguingly, a specific class of TEs—retrotransposons—is transiently expressed at discrete phases during mammalian development and has been linked to the establishment of totipotency during zygotic genome activation (ZGA). While mechanisms controlling TE regulation in somatic tissues have been extensively studied, the significance underlying the unique transcriptional reactivation of retrotransposons during ZGA is only beginning to be uncovered. In this review, we summarize the expression dynamics of key retrotransposons during ZGA, focusing on findings from in vivo totipotent embryos and in vitro totipotent-like embryonic stem cells (ESCs). We then dissect the functions of retrotransposons and discuss how their transcriptional activities are finetuned during early stages of mammalian development.


2018 ◽  
Author(s):  
Marina Veil ◽  
Lev Yampolsky ◽  
Björn Grüning ◽  
Daria Onichtchouk

AbstractThe zebrafish embryo is mostly transcriptionally quiescent during the first 10 cell cycles, until the main wave of Zygotic Genome Activation (ZGA) occurs, accompanied by fast chromatin remodeling. At ZGA, homologs of mammalian stem cell transcription factors (TFs) Pou5f3, Nanog and Sox19b bind to thousands of developmental enhancers to initiate transcription. So far, how these TFs influence chromatin dynamics at ZGA has remained unresolved. To address this question, we analyzed nucleosome positions in wild-type and Maternal-Zygotic (MZ) mutants for pou5f3 and nanog by MNase-seq. We show that Nanog, Sox19b and Pou5f3 bind to the High Nucleosome Affinity Regions (HNARs). HNARs are spanning over 600 bp, featuring high in vivo and predicted in vitro nucleosome occupancy and high predicted propeller twist DNA shape value. We suggest a two-step nucleosome destabilization-depletion model, where the same intrinsic DNA properties of HNAR promote both high nucleosome occupancy and differential binding of TFs. In the first step, already prior to ZGA, Pou5f3 and Nanog destabilize nucleosomes on HNAR centers genome-wide. In the second step, post-ZGA, Nanog, Pou5f3 and SoxB1 maintain open chromatin state on the subset of HNARs, acting synergistically. Nanog binds to the HNAR center, while the Pou5f3 stabilizes the flanks. The HNAR model will provide a useful tool for genome regulatory studies in the variety of biological systems.


Development ◽  
2021 ◽  
Author(s):  
Zhiyuan Chen ◽  
Zhenfei Xie ◽  
Yi Zhang

How maternal factors in oocytes initiate zygotic genome activation (ZGA) remains elusive in mammals, partly due to the challenge of de novo identification of key factors using scarce materials. The 2-cell (2C) embryo like cells has been widely used as an in vitro model to understand mouse ZGA and totipotency given its expression of a group of 2C embryo-specific genes and its simplicity for genetic manipulation. Recent studies indicate that DPPA2 and DPPA4 are required for establishing the 2C-like state in mouse embryonic stem cells (ESCs) in a DUX-dependent manner. These results suggest that DPPA2 and DPPA4 are essential maternal factors that regulate Dux and ZGA in embryos. By analyzing maternal knockout and maternal-zygotic knockout embryos, we unexpectedly found that DPPA2 and DPPA4 are dispensable for Dux activation, ZGA, and preimplantation development. Our study suggests that 2C-like cells do not fully recapitulate 2-cell embryos in terms of 2C-gene regulation and cautions should be taken when studying ZGA and totipotency using 2C-like cells as the model system.


2008 ◽  
Vol 20 (7) ◽  
pp. 818 ◽  
Author(s):  
Luca Magnani ◽  
Christine M. Johnson ◽  
Ryan A. Cabot

Zygotic genome activation (ZGA) is a major event during cleavage development. In vitro manipulation of mammalian embryos (including embryo culture) can result in developmental arrest around the time of ZGA. Eukaryotic elongation initiation factor 1A (eIF1A) has been used as a marker for ZGA in some mammalian species. We hypothesised expression of eIF1A can be used to assess ZGA in the pig; we also hypothesised that the expression profile of eIF1A can be used to assess developmental potential in vitro. The aims of the present study were to determine the expression pattern of eIF1A during porcine cleavage development and to assess its expression levels in embryos of different quality. We used a real-time reverse transcription–polymerase chain reaction assay to quantify eIF1A transcripts at different time points during cleavage development in porcine embryos produced by parthenogenetic activation (PA) and in vitro fertilisation (IVF). We found that eIF1A is activated at the two-cell stage in IVF embryos and at the four-cell stage in PA embryos. We showed that the increase in transcript levels observed in parthenogenetic embryos is dependent on de novo transcription. We found altered levels of eIF1A transcripts in parthenogenetic embryos that presented as either two- or eight-cell embryos 48 h after activation compared with four-cell embryos at the same time point. Our work supports the hypothesis that eIF1A is a marker of porcine ZGA and its expression profile can be used to assess embryo quality.


2021 ◽  
Author(s):  
Zhiyuan Chen ◽  
Zhenfei Xie ◽  
Yi Zhang

How maternal factors in oocytes initiate zygotic genome activation (ZGA) remains elusive. Recent studies indicate that DPPA2 and DPPA4 are required for establishing a 2-cell embryo-like (2C-like) state in mouse embryonic stem cells (ESCs) in a DUX-dependent manner. These results suggest that DPPA2 and DPPA4 are essential maternal factors that regulate Dux and ZGA in embryos. By analyzing maternal knockout and maternal-zygotic knockout embryos, we unexpectedly found that Dux activation, ZGA, and preimplantation development are normal in embryos without DPPA2 or DPPA4. Thus, unlike in ESCs/2C-like cells, DPPA2 and DPPA4 are dispensable for ZGA and preimplantation development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dafne Ibarra-Morales ◽  
Michael Rauer ◽  
Piergiuseppe Quarato ◽  
Leily Rabbani ◽  
Fides Zenk ◽  
...  

AbstractDuring embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization.


2021 ◽  
Author(s):  
Krista R Gert ◽  
Luis Enrique Cabrera Quio ◽  
Maria Novatchkova ◽  
Yixuan Guo ◽  
Bradley R Cairns ◽  
...  

After fertilization, the sperm and egg contribute unequally to the newly formed zygote. While the sperm contributes mainly paternal DNA, the egg provides both maternal DNA and the bulk of the future embryonic cytoplasm. Most embryonic processes (like the onset of zygotic transcription) depend on maternally-provided cytoplasmic components, and it is largely unclear whether paternal components besides the centrosome play a role in the regulation of early embryogenesis. Here we report a reciprocal zebrafish-medaka hybrid system as a powerful tool to investigate paternal vs. maternal influence during early development. By combining expression of zebrafish Bouncer on the medaka egg with artificial egg activation, we demonstrate the in vitro generation of paternal zebrafish x maternal medaka (reripes) hybrids. These hybrids complement the previously established paternal medaka x maternal zebrafish (latio) hybrids (Herberg et al., 2018). As proof of concept, we investigated maternal vs. paternal control of zygotic genome activation (ZGA) timing using this reciprocal hybrid system. RNA-seq analysis of the purebred fish species and hybrids revealed that the onset of ZGA is primarily governed by the egg. Overall, our study establishes the reciprocal zebrafish-medaka hybrid system as a versatile tool to dissect parental control mechanisms during early development.


2021 ◽  
Author(s):  
Jasmin Taubenschmid-Stowers ◽  
Maria Rostovskaya ◽  
Fatima Santos ◽  
Sebastian Ljung ◽  
Ricard Argelaguet ◽  
...  

The remodelling of the epigenome and transcriptome of the fertilised oocyte to establish totipotency in the zygote and developing embryo is one of the most critical processes in mammalian embryogenesis. Zygotic or embryonic genome activation (ZGA, EGA) in the 2-cell embryo in mouse, and the 8-cell embryo in humans, constitutes the first major wave of transcription. Failure to initiate ZGA leads to developmental defects, and contributes to the high attrition rates of human pre-implantation embryos. Due to limitations in cell numbers and experimental tractability, the mechanisms that regulate human embryonic genome activation in the totipotent embryo remain poorly understood. Here we report the discovery of human 8-cell like cells (8CLCs) specifically among naive embryonic stem cells, but not primed pluripotent cells. 8CLCs express ZGA marker genes such as ZSCAN4, LEUTX and DUXA and their transcriptome closely resembles that of the 8-cell human embryo. 8-cell like cells reactivate 8-cell stage specific transposable elements such as HERVL and MLT2A1 and are characterized by upregulation of the DNA methylation regulator DPPA3. 8CLCs show reduced SOX2 protein, and can be identified based on expression of the novel ZGA-associated protein markers TPRX1 and H3.Y in vitro. Overexpression of the transcription factor DUX4 as well as spliceosome inhibition increase ZGA-like transcription and enhance TPRX1+ 8CLCs formation. Excitingly, the in vitro identified 8CLC marker proteins TPRX1 and H3.Y are also expressed in 8-cell human embryos at the time of genome activation and may thus be relevant in vivo. The discovery of 8CLCs provides a unique opportunity to model and manipulate human ZGA-like transcriptional programs in vitro, and might provide critical functional insights into one of the earliest events in human embryogenesis in vivo.


2018 ◽  
Author(s):  
Alberto De Iaco ◽  
Alexandre Coudray ◽  
Julien Duc ◽  
Didier Trono

AbstractAfter fertilization of the transcriptionally silent oocyte, expression from both parental chromosomes is launched through so-called zygotic genome activation (ZGA), occurring in the mouse at the 2-cell stage. Amongst the first elements to be transcribed are the Dux gene, the product of which secondarily induces a wide array of ZGA genes, and a subset of evolutionary recent LINE-1 retrotransposons, which regulate chromatin accessibility in the early embryo. The maternally-inherited factors that activate Dux and LINE-1 transcription have so far remained unknown. Here we identify the paralog proteins DPPA2 and DPPA4 as responsible for this process.


Sign in / Sign up

Export Citation Format

Share Document