mitotic chromosome
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 66)

H-INDEX

62
(FIVE YEARS 7)

2021 ◽  
Vol 134 (23) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Joanna Wenda is first author on ‘ Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans’, published in JCS. Joanna is a PhD student (in the process of graduating) in the lab of Florian Steiner at Department of Molecular Biology, University of Geneva, Geneva, Switzerland, investigating chromatin and cell biology, specifically centromere maintenance and mitotic chromosome formation.


2021 ◽  
Author(s):  
Tamas Szoradi ◽  
Tong Shu ◽  
Gururaj R Kidiyoor ◽  
Ying Xie ◽  
Nora L Herzog ◽  
...  

The cell interior is highly crowded and far from thermodynamic equilibrium. This environment can dramatically impact molecular motion and assembly, and therefore influence sub-cellular organization and biochemical reaction rates. These effects depend strongly on length-scale, with the least information available at the important mesoscale (10-100 nanometers), which corresponds to the size of crucial regulatory molecules such as RNA polymerase II. It has been challenging to study the mesoscale physical properties of the nucleoplasm because previous methods were labor-intensive and perturbative. Here, we report nuclear Genetically Encoded Multimeric nanoparticles (nucGEMs). Introduction of a single gene leads to continuous production and assembly of protein-based bright fluorescent nanoparticles of 40 nm diameter. We implemented nucGEMs in budding and fission yeasts and in mammalian cell lines. We found that the nucleus is more crowded than the cytosol at the mesoscale, that mitotic chromosome condensation ejects nucGEMs from the nucleus, and that nucGEMs are excluded from heterochromatin and the nucleolus. nucGEMs enable hundreds of nuclear rheology experiments per hour, and allow evolutionary comparison of the physical properties of the cytosol and nucleoplasm.


Author(s):  
Konstantinos Stamatiou ◽  
Paola Vagnarelli

Ki-67 is highly expressed in proliferating cells, a characteristic that made the protein a very important proliferation marker widely used in the clinic. However, the molecular functions and properties of Ki-67 remained quite obscure for a long time. Only recently important discoveries have shed some light on its function and shown that Ki-67 has a major role in the formation of mitotic chromosome periphery compartment, it is associated with protein phosphatase one (PP1) and regulates chromatin function in interphase and mitosis. In this review, we discuss the role of Ki-67 during cell division. Specifically, we focus on the importance of Ki-67 in chromosome individualisation at mitotic entry (prometaphase) and its contribution to chromosome clustering and nuclear remodelling during mitotic exit.


2021 ◽  
Author(s):  
Julian Haase ◽  
Richard Chen ◽  
Mary Kate Bonner ◽  
Lisa M Miller Jenkins ◽  
Alexander E Kelly

Condensins compact chromosomes to promote their equal segregation during mitosis, but the mechanism of condensin engagement with and action on chromatin is incompletely understood. Here, we show that the general transcription factor TFIIH complex is continuously required to establish and maintain a compacted chromosome structure in transcriptionally silent Xenopus egg extracts. Inhibiting the DNA-dependent ATPase activity of the TFIIH complex subunit XPB prevents the enrichment of condensins I and II, but not topoisomerase II, on chromatin. In addition, TFIIH inhibition reversibly induces a complete loss of chromosome structure within minutes, prior to the loss of condensins from chromatin. Reducing nucleosome density through partial histone depletion restores chromosome structure and condensin enrichment in the absence of TFIIH activity. We propose that the TFIIH complex promotes mitotic chromosome condensation by dynamically altering chromatin structure to facilitate condensin loading and condensin-dependent loop extrusion.


2021 ◽  
Author(s):  
Joanna M. Wenda ◽  
Reinier F. Prosée ◽  
Caroline Gabus ◽  
Florian A. Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


2021 ◽  
Author(s):  
Xiaocui Li ◽  
Xiaojuan Li ◽  
Chen Xie ◽  
Sihui Cai ◽  
Mengqiu Li ◽  
...  

AbstractAs a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


2021 ◽  
Author(s):  
John Sedat ◽  
Angus McDonald ◽  
Herbert G Kasler ◽  
Eric Verdin ◽  
Hu Cang ◽  
...  

A molecular architecture is proposed for an example mitotic chromosome, human Chromosome 10. This architecture is built on a previously described interphase chromosome structure based on Cryo-EM cellular tomography (1), thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle, for mitotic chromosomes, is specific coiling of the 11-nm nucleosome fiber into large scale approximately 200 nm structures (a Slinky (2, motif cited in 3) in interphase, and then further modification and subsequent additional coiling for the final structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well known cytological configurations. In addition, proof is experimentally provided, by digital PCR technology, that G1 T-cell nuclei are diploid, thus one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.


2021 ◽  
Author(s):  
Alex F Thompson ◽  
Patrick R Blackburn ◽  
Dusica Babovic-Vuksanovic ◽  
Jane B Lian ◽  
Eric W Klee ◽  
...  

The chromokinesin KIF22 uses plus end-directed motility and direct binding to chromosome arms to generate pushing forces that contribute to mitotic chromosome congression and alignment. Mutations in the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the coiled-coil domain of the KIF22 tail. The mechanism by which these mutations affect development is unknown. We assessed whether pathogenic mutations affect the function of KIF22 in mitosis and demonstrate that mutations do not result in a loss of KIF22 function. Pathogenic mutations did not alter the localization or prometaphase function of KIF22. Instead, mutations disrupted chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, a phosphomimetic mutation, which constitutively activates the motor, phenocopied the effects of pathogenic mutations. These findings offer insight into the mechanism by which mutations in KIF22 may affect human development, the balance between polar ejection forces and antiparallel microtubule sliding in anaphase, and potential mechanisms of KIF22 regulation.


Sign in / Sign up

Export Citation Format

Share Document