dna loops
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 32)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Author(s):  
David H Tse ◽  
Nicole A Becker ◽  
Robert T Young ◽  
Wilma K Olson ◽  
Justin P Peters ◽  
...  

Abstract Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.


2021 ◽  
Vol 7 (33) ◽  
pp. eabf3641
Author(s):  
Nicholas A. W. Bell ◽  
Philip J. Haynes ◽  
Katharina Brunner ◽  
Taiana Maia de Oliveira ◽  
Maria M. Flocco ◽  
...  

Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that plays important roles in DNA repair, chromatin organization and transcription regulation. Although binding and activation of PARP1 by DNA damage sites has been extensively studied, little is known about how PARP1 binds to long stretches of undamaged DNA and how it could shape chromatin architecture. Here, using single-molecule techniques, we show that PARP1 binds and condenses undamaged, kilobase-length DNA subject to sub-piconewton mechanical forces. Stepwise decondensation at high force and DNA braiding experiments show that the condensation activity is due to the stabilization of DNA loops by PARP1. PARP inhibitors do not affect the level of condensation of undamaged DNA but act to block condensation reversal for damaged DNA in the presence of NAD+. Our findings suggest a mechanism for PARP1 in the organization of chromatin structure.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kazuhiro Maeshima ◽  
Shiori Iida

DNA loops can be formed by a mechanism in which the cohesin complex pulls DNA strands through its ring structure using biased Brownian motion.


2021 ◽  
Author(s):  
Biswajit Pradhan ◽  
Roman Barth ◽  
Eugene Kim ◽  
Iain F. Davidson ◽  
Benedikt Bauer ◽  
...  

The ring-shaped structural-maintenance-of-chromosomes (SMC) complexes condensin and cohesin extrude loops of DNA as a key motif in chromosome organization. It remains, however, unclear how these SMC motor proteins can extrude DNA loops in chromatin that is bound with proteins. Here, using in vitro single-molecule visualization, we show that nucleosomes, RNA polymerase, and dCas9 pose virtually no barrier to DNA loop extrusion by yeast condensin. Strikingly, we find that even DNA-bound nanoparticles as large as 200 nm, much bigger than the SMC ring size, can be translocated into DNA loops during condensin-driven extrusion. Similarly, human cohesin can pass 200 nm particles during loop extrusion, which even occurs for a single-chain version of cohesin in which the ring-forming subunits are covalently linked and cannot open up to entrap DNA. These findings disqualify all common loop-extrusion models where DNA passes through the SMC rings (pseudo)topologically, and instead point to a nontopological mechanism for DNA loop extrusion.


2021 ◽  
Author(s):  
David H. Tse ◽  
Nicole A. Becker ◽  
Robert T. Young ◽  
Wilma K. Olson ◽  
Justin P. Peters ◽  
...  

Architectural proteins alter the shape of DNA, often by distorting the double helix and introducing sharp kinks that relieve strain in tightly-bent DNA structures. Here we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from E. coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.


2021 ◽  
Author(s):  
Silvia Hormeno ◽  
Oliver J Wilkinson ◽  
Clara Aicart-Ramos ◽  
Sahiti Kuppa ◽  
Edwin Antony ◽  
...  

Human HELB is a poorly-characterised helicase suggested to play both positive and negative regulatory roles in DNA replication and recombination. In this work, we used bulk and single molecule approaches to characterise the biochemical activities of HELB protein with a particular focus on its interactions with RPA and RPA-ssDNA filaments. HELB is a monomeric protein which binds tightly to ssDNA with a site size of ~20 nucleotides. It couples ATP hydrolysis to translocation along ssDNA in the 5′-to-3′ direction accompanied by the formation of DNA loops and with an efficiency of 1 ATP per base. HELB also displays classical helicase activity but this is very weak in the absence of an assisting force. HELB binds specifically to human RPA which enhances its ATPase and ssDNA translocase activities but inhibits DNA unwinding. Direct observation of HELB on RPA nucleoprotein filaments shows that translocating HELB concomitantly clears RPA from single-stranded DNA.


2021 ◽  
Author(s):  
Nathalie Bastié ◽  
Christophe Chapard ◽  
Lise Dauban ◽  
Olivier Gadal ◽  
Frederic Beckouёt ◽  
...  

ABSTRACTChromosome spatial organization and dynamics influence DNA-related metabolic processes. SMC complexes like cohesin are essential instruments of chromosome folding. Cohesin-dependent chromatin loops bring together distal loci to regulate gene transcription, DNA repair and V(D)J recombination processes. Here we characterize further the roles of members of the cohesin holocomplex in regulating chromatin loop expansion, showing that Scc2, which stimulates cohesin ATPase activity, is essential for the translocation process required to extend DNA loop length. Eco1-dependent acetylation of Smc3 during S phase counteracts this activity through the stabilization of Pds5, to finely tune loop sizes and stability during G2. Inhibiting Pds5 in G2 leads to a strong enlargement of pre-established, stable DNA loops, in a Scc2-dependent manner. Altogether, the study strongly supports a Scc2-mediated translocation process driving expansion of DNA loops in living cells.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009435
Author(s):  
Zachary M. Carico ◽  
Holden C. Stefan ◽  
Megan Justice ◽  
Askar Yimit ◽  
Jill M. Dowen

The cohesin complex spatially organizes interphase chromatin by bringing distal genomic loci into close physical proximity, looping out the intervening DNA. Mutation of cohesin complex subunits is observed in cancer and developmental disorders, but the mechanisms through which these mutations may contribute to disease remain poorly understood. Here, we investigate a recurrent missense mutation to the hinge domain of the cohesin subunit SMC1A, observed in acute myeloid leukemia. Engineering this mutation into murine embryonic stem cells caused widespread changes in gene expression, including dysregulation of the pluripotency gene expression program. This mutation reduced cohesin levels at promoters and enhancers, decreased DNA loops and interactions across short genomic distances, and weakened insulation at CTCF-mediated DNA loops. These findings provide insight into how altered cohesin function contributes to disease and identify a requirement for the cohesin hinge domain in three-dimensional chromatin structure.


2021 ◽  
Vol 22 (5) ◽  
pp. 2414
Author(s):  
Lucía del Priore ◽  
María Inés Pigozzi

During meiosis, the number of crossovers vary in correlation to the length of prophase chromosome axes at the synaptonemal complex stage. It has been proposed that the regular spacing of the DNA loops, along with the close relationship of the recombination complexes and the meiotic axes are at the basis of this covariation. Here, we use a cytogenomic approach to investigate the relationship between the synaptonemal complex length and the DNA content in chicken oocytes during the pachytene stage of the first meiotic prophase. The synaptonemal complex to DNA ratios of specific chromosomes and chromosome segments were compared against the recombination rates obtained by MLH1 focus mapping. The present results show variations in the DNA packing ratios of macro- and microbivalents and also between regions within the same bivalent. Chromosome or chromosome regions with higher crossover rates form comparatively longer synaptonemal complexes than expected based on their DNA content. These observations are compatible with the formation of higher number of shorter DNA loops along meiotic axes in regions with higher recombination levels.


Genetics ◽  
2021 ◽  
Author(s):  
Natalie L Rittenhouse ◽  
Zachary M Carico ◽  
Ying Frances Liu ◽  
Holden C Stefan ◽  
Nicole L Arruda ◽  
...  

Abstract Cohesin is a ring-shaped protein complex that controls dynamic chromosome structure. Cohesin activity is important for a variety of biological processes, including formation of DNA loops that regulate gene expression. The precise mechanisms by which cohesin shapes local chromosome structure and gene expression are not fully understood. Recurrent mutations in cohesin complex members have been reported in various cancers, though it is not clear whether many cohesin sequence variants have phenotypes and contribute to disease. Here, we utilized CRISPR/Cas9 genome editing to introduce a variety of cohesin sequence variants into murine embryonic stem cells and investigate their molecular and cellular consequences. Some of the cohesin variants tested caused changes to transcription, including altered expression of gene encoding lineage-specifying developmental regulators. Altered gene expression was also observed at insulated neighborhoods, where cohesin-mediated DNA loops constrain potential interactions between genes and enhancers. Furthermore, some cohesin variants altered the proliferation rate and differentiation potential of murine embryonic stem cells. This study provides a functional comparison of cohesin variants found in cancer within an isogenic system, revealing the relative roles of various cohesin perturbations on gene expression and maintenance of cellular identity.


Sign in / Sign up

Export Citation Format

Share Document