scholarly journals Schubert polynomials and degeneracy locus formulas

Author(s):  
Harry Tamvakis
2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Steven V Sam

International audience The classical Thom―Porteous formula expresses the homology class of the degeneracy locus of a generic map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by Pragacz by expressing this alternating sum as the Euler characteristic of a Schur complex, which gives an explanation for the signs. Fulton later generalized this formula to the situation of flags of vector bundles by using alternating sums of Schubert polynomials. Building on the Schubert functors of Kraśkiewicz and Pragacz, we introduce Schubert complexes and show that Fulton's alternating sum can be realized as the Euler characteristic of this complex, thereby providing a conceptual proof for why an alternating sum appears. \par La formule classique de Thom―Porteous exprime la classe d'homologie du locus de la dégénérescence d'une fonction générique entre deux fibrés vectoriels comme une somme alternée des polynômes de Schur. Un preuve de cette formule a été donnée par Pragacz en exprimant ce alternant somme comme la caractéristique d'Euler d'un complexe de Schur, ce qui donne une explication pour les signes. Fulton puis généralisée cette formule à la situation des drapeaux de fibrés vectoriels à l'aide alternant des sommes de polynômes de Schubert. S'appuyant sur le Schubert foncteurs de Kraśkiewicz et Pragacz, nous introduisons les complexes de Schubert et montrent que la somme alternée de Fulton peuvent être réalisées en tant que Euler caractéristique de ce complexe, fournissant ainsi une preuve conceptuelle pour lesquelles une somme alternée appara\^ıt.


2011 ◽  
Vol 226 (1) ◽  
pp. 840-886 ◽  
Author(s):  
Takeshi Ikeda ◽  
Leonardo C. Mihalcea ◽  
Hiroshi Naruse

2013 ◽  
Vol Vol. 15 no. 2 (Combinatorics) ◽  
Author(s):  
Adrien Boussicault

Combinatorics International audience We consider the family of rational functions ψw= ∏( xwi - xwi+1 )-1 indexed by words with no repetition. We study the combinatorics of the sums ΨP of the functions ψw when w describes the linear extensions of a given poset P. In particular, we point out the connexions between some transformations on posets and elementary operations on the fraction ΨP. We prove that the denominator of ΨP has a closed expression in terms of the Hasse diagram of P, and we compute its numerator in some special cases. We show that the computation of ΨP can be reduced to the case of bipartite posets. Finally, we compute the numerators associated to some special bipartite graphs as Schubert polynomials.


10.37236/8106 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
David Anderson

We introduce diagrams and essential sets for signed permutations, extending the analogous notions for ordinary permutations.  In particular, we show that the essential set provides a minimal list of rank conditions defining the Schubert variety or degeneracy locus corresponding to a signed permutation.  Our essential set is in bijection with the poset-theoretic version defined by Reiner, Woo, and Yong, and thus gives an explicit, diagrammatic method for computing the latter.


10.37236/4139 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Carolina Benedetti ◽  
Nantel Bergeron

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood combinatorially from the multiplication in the space of dual $k$-Schur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottile's $r$-Bruhat order, along with certain operators associated to this order. Then, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of  Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem. This is the first step of our more general program of showing combinatorially  the positivity of the multiplication of a dual $k$-Schur function by a Schur function.


Sign in / Sign up

Export Citation Format

Share Document