Descriptional complexity of regular languages

2021 ◽  
pp. 411-457
Author(s):  
Hermann Gruber ◽  
Markus Holzer ◽  
Martin Kutrib
Author(s):  
Andrea Herrmann ◽  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

2018 ◽  
Vol 53 (1-2) ◽  
pp. 1-17
Author(s):  
Lukas Fleischer ◽  
Manfred Kufleitner

Weakly recognizing morphisms from free semigroups onto finite semigroups are a classical way for defining the class of ω-regular languages, i.e., a set of infinite words is weakly recognizable by such a morphism if and only if it is accepted by some Büchi automaton. We study the descriptional complexity of various constructions and the computational complexity of various decision problems for weakly recognizing morphisms. The constructions we consider are the conversion from and to Büchi automata, the conversion into strongly recognizing morphisms, as well as complementation. We also show that the fixed membership problem is NC1-complete, the general membership problem is in L and that the inclusion, equivalence and universality problems are NL-complete. The emptiness problem is shown to be NL-complete if the input is given as a non-surjective morphism.


2003 ◽  
Vol 14 (06) ◽  
pp. 1087-1102 ◽  
Author(s):  
MARKUS HOLZER ◽  
MARTIN KUTRIB

We investigate the descriptional complexity of operations on finite and infinite regular languages over unary and arbitrary alphabets. The languages are represented by nondeterministic finite automata (NFA). In particular, we consider Boolean operations, catenation operations – concatenation, iteration, λ-free iteration – and the reversal. Most of the shown bounds are tight in the exact number of states, i.e. the number is sufficient and necessary in the worst case. Otherwise tight bounds in the order of magnitude are shown.


2005 ◽  
Vol 16 (05) ◽  
pp. 975-984 ◽  
Author(s):  
HING LEUNG

In this paper, we study the tradeoffs in descriptional complexity of NFA (nondeterministic finite automata) of various amounts of ambiguity. We say that two classes of NFA are separated if one class can be exponentially more succinct in descriptional sizes than the other. New results are given for separating DFA (deterministic finite automata) from UFA (unambiguous finite automata), UFA from MDFA (DFA with multiple initial states) and UFA from FNA (finitely ambiguous NFA). We present a family of regular languages that we conjecture to be a good candidate for separating FNA from LNA (linearly ambiguous NFA).


Author(s):  
Friedrich Otto

AbstractStateless ordered restart-delete automata (stl-ORD-automata) are studied. These are obtained from the stateless ordered restarting automata (stl-ORWW-automata) by introducing an additional restart-delete operation, which, based on the surrounding context, deletes a single letter. While the stl-ORWW-automata accept the regular languages, we show that the swift stl-ORD-automata yield a characterization for the class of context-free languages. Here a stl-ORD-automaton is called swift if it can move its window to any position after performing a restart. We also study the descriptional complexity of swift stl-ORD-automata and relate them to limited context restarting automata.


2008 ◽  
Vol 19 (04) ◽  
pp. 813-826 ◽  
Author(s):  
REMCO LOOS ◽  
ANDREAS MALCHER ◽  
DETLEF WOTSCHKE

In this paper, the descriptional complexity of extended finite splicing systems is studied. These systems are known to generate exactly the class of regular languages. Upper and lower bounds are shown relating the size of these splicing systems, defined as the total length of the rules and the initial language of the system, to the size of their equivalent minimal nondeterministic finite automata (NFA). In addition, an accepting model of extended finite splicing systems is studied. Using this variant one can obtain systems which are more than polynomially more succinct than the equivalent NFA or generating extended finite splicing system.


Sign in / Sign up

Export Citation Format

Share Document