The complexity of weakly recognizing morphisms

2018 ◽  
Vol 53 (1-2) ◽  
pp. 1-17
Author(s):  
Lukas Fleischer ◽  
Manfred Kufleitner

Weakly recognizing morphisms from free semigroups onto finite semigroups are a classical way for defining the class of ω-regular languages, i.e., a set of infinite words is weakly recognizable by such a morphism if and only if it is accepted by some Büchi automaton. We study the descriptional complexity of various constructions and the computational complexity of various decision problems for weakly recognizing morphisms. The constructions we consider are the conversion from and to Büchi automata, the conversion into strongly recognizing morphisms, as well as complementation. We also show that the fixed membership problem is NC1-complete, the general membership problem is in L and that the inclusion, equivalence and universality problems are NL-complete. The emptiness problem is shown to be NL-complete if the input is given as a non-surjective morphism.

2005 ◽  
Vol 16 (04) ◽  
pp. 645-662 ◽  
Author(s):  
JÜRGEN DASSOW ◽  
MARKUS HOLZER

We formalize the hairpin inverted repeat excision, which is known in ciliate genetics as an operation on words and languages by defining [Formula: see text] as the set of all words xαyRαRz where w = xαyαRz and the pointer α is in P. We extend this concept to language families which results in families [Formula: see text]. For [Formula: see text] and [Formula: see text] be the families of finite, regular, context-free, context-sensitive or recursively enumerable language, respectively, we determine the hierarchy of the families [Formula: see text] and compare these families with those of the Chomsky hierarchy. Furthermore, we present the status of decidability of the membership problem, emptiness problem and finiteness problem for the families [Formula: see text].


Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


1987 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Egon Börger ◽  
Ulrich Löwen

We survey and give new results on logical characterizations of complexity classes in terms of the computational complexity of decision problems of various classes of logical formulas. There are two main approaches to obtain such results: The first approach yields logical descriptions of complexity classes by semantic restrictions (to e.g. finite structures) together with syntactic enrichment of logic by new expressive means (like e.g. fixed point operators). The second approach characterizes complexity classes by (the decision problem of) classes of formulas determined by purely syntactic restrictions on the formation of formulas.


2006 ◽  
Vol 157 (11) ◽  
pp. 1532-1549 ◽  
Author(s):  
Werner Kuich ◽  
George Rahonis

Author(s):  
Andrea Herrmann ◽  
Martin Kutrib ◽  
Andreas Malcher ◽  
Matthias Wendlandt

Author(s):  
M. NIVAT ◽  
A. SAOUDI ◽  
K. G. SUBRAMANIAN ◽  
R. SIROMONEY ◽  
V. R. DARE

We introduce a new model for generating finite, digitized, connected pictures called puzzle grammars and study its generative power by comparison with array grammars. We note how this model generalizes the classical Chomskian grammars and study the effect of direction-independent rewriting rules. We prove that regular control does not increase the power of basic puzzle grammars. We show that for basic and context-free puzzle grammars, the membership problem is NP-complete and the emptiness problem is undecidable.


1992 ◽  
Vol 03 (03) ◽  
pp. 233-244 ◽  
Author(s):  
A. SAOUDI ◽  
D.E. MULLER ◽  
P.E. SCHUPP

We introduce four classes of Z-regular grammars for generating bi-infinite words (i.e. Z-words) and prove that they generate exactly Z-regular languages. We extend the second order monadic theory of one successor to the set of the integers (i.e. Z) and give some characterizations of this theory in terms of Z-regular grammars and Z-regular languages. We prove that this theory is decidable and equivalent to the weak theory. We also extend the linear temporal logic to Z-temporal logic and then prove that each Z-temporal formula is equivalent to a first order monadic formula. We prove that the correctness problem for finite state processes is decidable.


Sign in / Sign up

Export Citation Format

Share Document