scholarly journals A Hilbert expansion method for the rigorous sharp interface limit of the generalized Cahn–Hilliard equation

2014 ◽  
Vol 16 (1) ◽  
pp. 65-104 ◽  
Author(s):  
Dimitra Antonopoulou ◽  
Georgia Karali ◽  
Enza Orlandi
Author(s):  
Ľubomír Baňas ◽  
Huanyu Yang ◽  
Rongchan Zhu

AbstractWe study the sharp interface limit of the two dimensional stochastic Cahn-Hilliard equation driven by two types of singular noise: a space-time white noise and a space-time singular divergence-type noise. We show that with appropriate scaling of the noise the solutions of the stochastic problems converge to the solutions of the determinisitic Mullins-Sekerka/Hele-Shaw problem.


Author(s):  
Dimitra Antonopoulou ◽  
Ĺubomír Baňas ◽  
Robert Nürnberg ◽  
Andreas Prohl

AbstractWe consider the stochastic Cahn–Hilliard equation with additive noise term $$\varepsilon ^\gamma g\, {\dot{W}}$$ ε γ g W ˙ ($$\gamma >0$$ γ > 0 ) that scales with the interfacial width parameter $$\varepsilon $$ ε . We verify strong error estimates for a gradient flow structure-inheriting time-implicit discretization, where $$\varepsilon ^{-1}$$ ε - 1 only enters polynomially; the proof is based on higher-moment estimates for iterates, and a (discrete) spectral estimate for its deterministic counterpart. For $$\gamma $$ γ sufficiently large, convergence in probability of iterates towards the deterministic Hele–Shaw/Mullins–Sekerka problem in the sharp-interface limit $$\varepsilon \rightarrow 0$$ ε → 0 is shown. These convergence results are partly generalized to a fully discrete finite element based discretization. We complement the theoretical results by computational studies to provide practical evidence concerning the effect of noise (depending on its ’strength’ $$\gamma $$ γ ) on the geometric evolution in the sharp-interface limit. For this purpose we compare the simulations with those from a fully discrete finite element numerical scheme for the (stochastic) Mullins–Sekerka problem. The computational results indicate that the limit for $$\gamma \ge 1$$ γ ≥ 1 is the deterministic problem, and for $$\gamma =0$$ γ = 0 we obtain agreement with a (new) stochastic version of the Mullins–Sekerka problem.


Author(s):  
Shibin Dai ◽  
Keith Promislow

We use a multi-scale analysis to derive a sharp interface limit for the dynamics of bilayer structures of the functionalized Cahn–Hilliard equation. In contrast to analysis based on single-layer interfaces, we show that the Stefan and Mullins–Sekerka problems derived for the evolution of single-layer interfaces for the Cahn–Hilliard equation are trivial in this context, and the sharp interface limit yields a quenched mean-curvature-driven normal velocity at O ( ε −1 ), whereas on the longer O ( ε −2 ) time scale, it leads to a total surface area preserving Willmore flow. In particular, for space dimension n =2, the constrained Willmore flow drives collections of spherically symmetric vesicles to a common radius, whereas for n =3, the radii are constant, and for n ≥4 the largest vesicle dominates.


Analysis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Helmut Abels ◽  
Johannes Kampmann

AbstractWe rigorously prove the convergence of weak solutions to a model for lipid raft formation in cell membranes which was recently proposed in [H. Garcke, J. Kampmann, A. Rätz and M. Röger, A coupled surface-Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci. 26 2016, 6, 1149–1189] to weak (varifold) solutions of the corresponding sharp-interface problem for a suitable subsequence. In the system a Cahn–Hilliard type equation on the boundary of a domain is coupled to a diffusion equation inside the domain. The proof builds on techniques developed in [X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard equation, J. Differential Geom. 44 1996, 2, 262–311] for the corresponding result for the Cahn–Hilliard equation.


2016 ◽  
Vol 76 (2) ◽  
pp. 433-456 ◽  
Author(s):  
Alpha Albert Lee ◽  
Andreas Münch ◽  
Endre Süli

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Li ◽  
Huizhang Yang ◽  
Bin He

Based on a general fractional Riccati equation and with Jumarie’s modified Riemann-Liouville derivative to an extended fractional Riccati expansion method for solving the time fractional Burgers equation and the space-time fractional Cahn-Hilliard equation, the exact solutions expressed by the hyperbolic functions and trigonometric functions are obtained. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.


Author(s):  
Dumitru Baleanu ◽  
Yavuz Uğurlu ◽  
Mustafa Inc ◽  
Bulent Kilic

In this paper, we used improved (G'/G)-expansion method to reach the solutions for some nonlinear time-fractional partial differential equations (fPDE). The fPDE is reduced to an ordinary differential equation (ODE) by means of Riemann–Liouille derivative and a basic variable transformation. Various types of functions are obtained for the time-fractional biological population model (fBPM) and Cahn–Hilliard (fCH) equation.


2015 ◽  
Vol 48 (1) ◽  
pp. 401-402
Author(s):  
Alpha A Lee ◽  
Andreas Munch ◽  
Endre Suli

Sign in / Sign up

Export Citation Format

Share Document