scholarly journals Exact Solutions of Fractional Burgers and Cahn-Hilliard Equations Using Extended Fractional Riccati Expansion Method

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Li ◽  
Huizhang Yang ◽  
Bin He

Based on a general fractional Riccati equation and with Jumarie’s modified Riemann-Liouville derivative to an extended fractional Riccati expansion method for solving the time fractional Burgers equation and the space-time fractional Cahn-Hilliard equation, the exact solutions expressed by the hyperbolic functions and trigonometric functions are obtained. The obtained results show that the presented method is effective and appropriate for solving nonlinear fractional differential equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Li ◽  
Huizhang Yang ◽  
Bin He

Based on Jumarie’s modified Riemann-Liouville derivative, the fractional complex transformation is used to transform fractional differential equations to ordinary differential equations. Exact solutions including the hyperbolic functions, the trigonometric functions, and the rational functions for the space-time fractional bidirectional wave equations are obtained using the(G′/G)-expansion method. The method provides a promising tool for solving nonlinear fractional differential equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Muhammad Shakeel ◽  
Qazi Mahmood Ul-Hassan ◽  
Jamshad Ahmad

We use the fractional derivatives in modified Riemann-Liouville derivative sense to construct exact solutions of time fractional simplified modified Camassa-Holm (MCH) equation. A generalized fractional complex transform is properly used to convert this equation to ordinary differential equation and, as a result, many exact analytical solutions are obtained with more free parameters. When these free parameters are taken as particular values, the traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. Moreover, the numerical presentations of some of the solutions have been demonstrated with the aid of commercial software Maple. The recital of the method is trustworthy and useful and gives more new general exact solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Özkan Güner ◽  
Adem C. Cevikel

We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Seyma Tuluce Demiray ◽  
Yusuf Pandir ◽  
Hasan Bulut

In this study, the generalized Kudryashov method (GKM) is handled to find exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. These time-fractional equations can be turned into another nonlinear ordinary differantial equation by travelling wave transformation. Then, GKM has been implemented to attain exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. Also, some new hyperbolic function solutions have been obtained by using this method. It can be said that this method is a generalized form of the classical Kudryashov method.


2016 ◽  
Vol 8 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Ahmet Bekir ◽  
Ozkan Guner ◽  
Burcu Ayhan ◽  
Adem C. Cevikel

AbstractIn this paper, the (G'/G)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Abdullah Sonmezoglu

The extended Jacobi elliptic function expansion method is used for solving fractional differential equations in the sense of Jumarie’s modified Riemann-Liouville derivative. By means of this approach, a few fractional differential equations are successfully solved. As a result, some new Jacobi elliptic function solutions including solitary wave solutions and trigonometric function solutions are established. The proposed method can also be applied to other fractional differential equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Huizhang Yang ◽  
Wei Li ◽  
Biyu Yang

An extended multipleG′/G-expansion method is used to seek the exact solutions of Caudrey-Dodd-Gibbon equation. As a result, plentiful new complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions, and their mixture with arbitrary parameters are effectively obtained. When some parameters are properly chosen as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wafaa M. Taha ◽  
M. S. M. Noorani

The(G’/G)-expansion method is proposed for constructing more general exact solutions of the nonlinear(2+1)-dimensional equation generated by the Jaulent-Miodek Hierarchy. As a result, when the parameters are taken at special values, some new traveling wave solutions are obtained which include solitary wave solutions which are based from the hyperbolic functions, trigonometric functions, and rational functions. We find in this work that the(G’/G)-expansion method give some new results which are easier and faster to compute by the help of a symbolic computation system. The results obtained were compared with tanh method.


Sign in / Sign up

Export Citation Format

Share Document