hilbert expansion
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Václav Kučera ◽  
Mária Lukáčová-Medvid’ová ◽  
Sebastian Noelle ◽  
Jochen Schütz

AbstractIn this paper we derive and analyse a class of linearly implicit schemes which includes the one of Feistauer and Kučera (J Comput Phys 224:208–221, 2007) as well as the class of RS-IMEX schemes (Schütz and Noelle in J Sci Comp 64:522–540, 2015; Kaiser et al. in J Sci Comput 70:1390–1407, 2017; Bispen et al. in Commun Comput Phys 16:307–347, 2014; Zakerzadeh in ESAIM Math Model Numer Anal 53:893–924, 2019). The implicit part is based on a Jacobian matrix which is evaluated at a reference state. This state can be either the solution at the old time level as in Feistauer and Kučera (2007), or a numerical approximation of the incompressible limit equations as in Zeifang et al. (Commun Comput Phys 27:292–320, 2020), or possibly another state. Subsequently, it is shown that this class of methods is asymptotically preserving under the assumption of a discrete Hilbert expansion. For a one-dimensional setting with some limitations on the reference state, the existence of a discrete Hilbert expansion is shown.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 912
Author(s):  
Sirui Li ◽  
Fangxin Zhao

In this article, we consider the Qian–Sheng model in the Landau–de Gennes framework describing nematic liquid crystal flows when the inertial effect is neglected. By taking the limit of elastic constant to zero (also called the uniaxial limit) and utilizing the so-called Hilbert expansion method, we provide a rigorous derivation from the non-inertial Qian–Sheng model to the Ericksen–Leslie model.


2020 ◽  
Vol 30 (10) ◽  
pp. 1935-1986 ◽  
Author(s):  
Pierre Degond ◽  
Sara Merino-Aceituno

Starting from a particle model describing self-propelled particles interacting through nematic alignment, we derive a macroscopic model for the particle density and mean direction of motion. We first propose a mean-field kinetic model of the particle dynamics. After diffusive rescaling of the kinetic equation, we formally show that the distribution function converges to an equilibrium distribution in particle direction, whose local density and mean direction satisfies a cross-diffusion system. We show that the system is consistent with symmetries typical of a nematic material. The derivation is carried over by means of a Hilbert expansion. It requires the inversion of the linearized collision operator for which we show that the generalized collision invariants, a concept introduced to overcome the lack of momentum conservation of the system, plays a central role. This cross-diffusion system poses many new challenging questions.


2019 ◽  
Vol 16 (01) ◽  
pp. 131-156
Author(s):  
Lanoir Addala ◽  
Mohamed Lazhar Tayeb

The diffusion approximation for a Boltzmann–Poisson system is studied. Nonlinear relaxation type collision operator is considered. A relative entropy is used to prove useful [Formula: see text]-estimates for the weak solutions of the scaled Boltzmann equation (coupled to Poisson) and to prove the convergence of the solution toward the solution of a nonlinear diffusion equation coupled to Poisson. In one dimension, a hybrid Hilbert expansion and the contraction property of the operator allow to exhibit a convergence rate.


2011 ◽  
Vol 4 (4) ◽  
pp. 873-900 ◽  
Author(s):  
Naoufel Ben Abdallah ◽  
◽  
Antoine Mellet ◽  
Marjolaine Puel ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document