scholarly journals Deformations of Kähler manifolds with non-vanishing holomorphic vector fields

2012 ◽  
pp. 997-1040 ◽  
Author(s):  
Jaume Amorós ◽  
Marcel Nicolau ◽  
Mònica Manjarín
2018 ◽  
Vol 62 (3) ◽  
pp. 623-641
Author(s):  
Bin Shen

AbstractIn this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over both compact and non-compact complete complex manifolds. We also inquire into the holomorphic vector fields on compact and non-compact complete complex Finsler manifolds. We get vanishing theorems in each case according to different certain curvature conditions. This work can be considered as generalizations of the classical results on Kähler manifolds and hermitian bundles.


2015 ◽  
Vol 363 (3-4) ◽  
pp. 893-911 ◽  
Author(s):  
Ovidiu Munteanu ◽  
Jiaping Wang

Author(s):  
Wei-Bo SU

Abstract The aim of this paper is to study variational properties for $f$-minimal Lagrangian submanifolds in Kähler manifolds with real holomorphy potentials. Examples of submanifolds of this kind including minimal Lagrangians and soliton solutions for Lagrangian mean curvature flow (LMCF). We derive 2nd variation formula for $f$-minimal Lagrangians as a generalization of Chen and Oh’s formula for minimal Lagrangians. As a corollary, we obtain stability of expanding and translating solitons for LMCF. We also define calibrated submanifolds with respect to $f$-volume in gradient steady Kähler–Ricci solitons as generalizations of special Lagrangians and translating solitons for LMCF and show that these submanifolds are necessarily noncompact. As a special case, we study the exact deformation vector fields on Lagrangian translators. Finally we discuss some generalizations and related problems.


2005 ◽  
Vol 16 (03) ◽  
pp. 281-301 ◽  
Author(s):  
ANDREI MOROIANU ◽  
PAUL-ANDI NAGY ◽  
UWE SEMMELMANN

We study 6-dimensional nearly Kähler manifolds admitting a Killing vector field of unit length. In the compact case, it is shown that up to a finite cover there is only one geometry possible, that of the 3-symmetric space S3 × S3.


2018 ◽  
Vol 2020 (9) ◽  
pp. 2769-2817 ◽  
Author(s):  
Zakarias Sjöström Dyrefelt

Abstract In this paper we study K-polystability of arbitrary (possibly non-projective) compact Kähler manifolds admitting holomorphic vector fields. As a main result we show that existence of a constant scalar curvature Kähler (cscK) metric implies geodesic K-polystability, in a sense that is expected to be equivalent to K-polystability in general. In particular, in the spirit of an expectation of Chen–Tang [28] we show that geodesic K-polystability implies algebraic K-polystability for polarized manifolds, so our main result recovers a possibly stronger version of results of Berman–Darvas–Lu [10] in this case. As a key part of the proof we also study subgeodesic rays with singularity type prescribed by singular test configurations and prove a result on asymptotics of the K-energy functional along such rays. In an appendix by R. Dervan it is moreover deduced that geodesic K-polystability implies equivariant K-polystability. This improves upon the results of [39] and proves that existence of a cscK (or extremal) Kähler metric implies equivariant K-polystability (resp. relative K-stability).


2002 ◽  
Author(s):  
Χριστίνα Μπενέκη

Η παρούσα διατριβή εντάσσεται ερευνητικά στην περιοχή της Διαφορικής Γεωμετρίας Riemann και ειδικότερα στο χαρακτηρισμό πολλαπλοτήτων Kahler με τη βοήθεια μικρών γεωδαισιακών σωλήνων. Επίσης, γίνεται μελέτη των σωληνοειδών επιφανειών του τρισδιάστατου Lorentz-Minkowski χώρου Μ3, όπως επίσης και των ελικοειδών επιφανειών αυτού του χώρου, των οποίων η μέση καμπυλότητα δεν είναι σταθερή. Στο Κεφάλαιο 1 έγινε μια σύντομη ιστορική αναδρομή στο πρόβλημα του χαρακτηρισμού πολλαπλοτήτων Riemann με τη βοήθεια μικρών γεωδαισιακών σφαιρών και μικρών γεωδαισιακών σωλήνων, καθώς και στο πρόβλημα της εξέτασης των επιφανειών με σταθερή ή μη σταθερή μέση καμπυλότητα και ειδικότερα του καθορισμού συγκεκριμένων ειδών επιφανειών (εκ περιστροφής, ευθειογενών, ελικοειδών, κ.λπ.) του Ευκλείδειου χώρου R3 καθώς και του Lorentz-Minkowski χώρου Μ3. Στο Κεφάλαιο 2 παρουσιάζονται βασικές έννοιες της Διαφορικής Γεωμετρίας, όπως οι Ευκλείδειες πολλαπλότητες, οι διαφορίσιμες πολλαπλότητες, οι διαφορίσιμες συναρτήσεις πάνω σε πολλαπλότητα, ο εφαπτόμενος χώρος, τα διανυσματικά πεδία, τα τανυστικά πεδία πάνω σε πολλαπλότητα, οι γραμμικές συνδέσεις, οι πολλαπλότητες Riemann, η συναλλοίωτη παράγωγος, οι γεωδαισιακές, η εκθετική απεικόνιση, η καμπυλότητα τομής καθώς και οι υποπολλαπλότητες δοθείσης πολλαπλότητας. Στο Κεφάλαιο 3 αρχικά παρατίθενται οι έννοιες των πολλαπλοτήτων Kahler, των συντεταγμένων Fermi, των διανυσματικών πεδίων Jacobi, καθώς και των σωληνοειδών υπερεπιφανειών γύρω από μια γεωδαισιακή και γύρω από μια υποπολλαπλότητα δοθείσης πολλαπλότητας. Παρουσιάζονται επίσης, για λόγους πληρότητας και κατανόησης, οι αποδείξεις των Λημμάτων 3.3.1 και 3.3.3 οι οποίες βρίσκονται στην εργασία με τίτλο “A characterization of Sasakian space forms by geodesic tubes” των D. E. Blair και B. J. Papantoniou [7]. Στη συνέχεια χαρακτηρίζονται οι πολλαπλότητες Kahler (M2n, g, J) που έχουν σταθερή ολομορφική καμπυλότητα τομής με τη βοήθεια του τελεστή σχήματος, αρκούντως μικρών γεωδαισιακών σωλήνων της Μ, γύρω από μια εμφυτευμένη γεωδαισιακή αυτής. Ο χαρακτηρισμός αυτός περιέχεται στο Θεώρημα 3.4.4 και επιτυγχάνεται με τη βοήθεια της Πρότασης 3.3.2 και των Θεωρημάτων 3.4.1 και 3.4.3 τα οποία αποδεικνύονται νωρίτερα. Τα αποτελέσματα αυτά είναι πρωτότυπα και ένα μέρος αυτών έχει δημοσιευτεί στην εργασία με τίτλο “Jacobi vector fields and geodesic tubes in certain Kahler manifolds” [1], Στο Κεφάλαιο 4 γενικεύεται η ως άνω ιδέα. Ειδικότερα, αντί να θεωρήσουμε γεωδαισιακή (υποπολλαπλότητα διάστασης ένα) της προς χαρακτηρισμό 2π-διάστατης πολλαπλότητας Μ, θεωρούμε μια συνεκτική, ολικά γεωδαισιακή, με συμπαγές περίβλημα, εμφυτευμένη υποπολλαπλότητα Ρ αυτής, διάστασης q (q < 2n— 1). Στη συνέχεια, κατασκευάζουμε τις σωληνοειδείς υπερεπιφάνειες της Μ γύρω από την υποπολλαπλότητα και δίνουμε το χαρακτηρισμό της πολλαπλότητας στο Θεώρημα 4.2.4 με τη βοήθεια της Πρότασης 4.1.2, του Λήμματος 4.1.1 και των Θεωρημάτων 4.2.1 και 4.2.3. Τα αποτελέσματα αυτού του Κεφαλαίου είναι επίσης πρωτότυπα. Ένα μέρος αυτών έχει δημοσιευθεί στην εργασία με τίτλο “Tubes and the geometry of the Kähler manifolds” [2], Στο Κεφάλαιο 5 επιλύεται το πρόβλημα της εύρεσης των ελικοειδών επιφανειών, ως προς ένα χωροειδή και ένα χρονοειδή άξονα περιστροφής του Lorentz-Minkowski χώρου R^31, με μέση καμπυλότητα μια δοσμένη διαφορίσιμη συνάρτηση. Το πρόβλημα αυτό αναφέρεται στα Θεωρήματα 5.1.3 και 5.1.4. Στη συνέχεια, στην Πρόταση 5.2.1, αποδεικνύεται ότι η κοινή ελικοειδής καθώς και η αλυσσοειδής επιφάνεια, τύπου Ι-, είναι αρμονικές επιφάνειες στον R^31, όπως επίσης ότι ΔΝ = 2ΚΝ, όπου Κ είναι η καμπυλότητα Gauss, Ν το μοναδιαίο κάθετο διανυσματικό πεδίο των αντίστοιχων επιφανειών και Δ ο τελεστής του Laplace. Στη συνέχεια, ορίζονται οι σωληνοειδείς επιφάνειες του R^31 και στην Πρόταση 5.2.2 αποδεικνύεται ότι οι σωληνοειδείς επιφάνειες γύρω από μια υπερβολική έλικα, είναι επιφάνειες τύπου Ι- των οποίων η καμπυλότητα Gauss είναι ανεξάρτητη του μήκους τόξου s της έλικας και εξαρτάται μόνο από την παράμετρο θ της υπερβολικής στροφής. Επίσης, στην ίδια Πρόταση, αναλύεται το διάνυσμα ΔR στη μορφή Β(θ)η + C(θ)b, όπου R είναι το διάνυσμα θέσης των σωληνοειδών επιφανειών γύρω από μια υπερβολική έλικα, Β(θ), C(θ) είναι γνωστές συναρτήσεις της γωνίας θ των υπερβολικών περιστροφών του επιπέδου R^21 και n, b είναι το πρώτο και δεύτερο μοναδιαίο κάθετο διάνυσμα της υπερβολικής έλικας, αντίστοιχα. Αυτά τα αποτελέσματα είναι πρωτότυπα και έχουν δημοσιευτεί στην εργασία με τίτλο “Helicoidal surfaces in 3-dimensional Minkowski space” [5].


2020 ◽  
Vol 72 (1) ◽  
pp. 127-147
Author(s):  
Carolyn Gordon ◽  
Eran Makover ◽  
Bjoern Muetzel ◽  
David Webb

Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4865-4873 ◽  
Author(s):  
Milos Petrovic

Generalized m-parabolic K?hler manifolds are defined and holomorphically projective mappings between such manifolds have been considered. Two non-linear systems of PDE?s in covariant derivatives of the first and second kind for the existence of such mappings are given. Also, relations between five linearly independent curvature tensors of generalized m-parabolic K?hler manifolds with respect to these mappings are examined.


Sign in / Sign up

Export Citation Format

Share Document