scholarly journals A note on positive-definite, symplectic four-manifolds

2018 ◽  
Vol 21 (1) ◽  
pp. 257-270 ◽  
Author(s):  
Jennifer Hom ◽  
Tye Lidman
Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


1990 ◽  
Vol 25 (1) ◽  
pp. 44-55
Author(s):  
Richard L. Branham
Keyword(s):  

2020 ◽  
Vol 18 (1) ◽  
pp. 858-872
Author(s):  
Imed Kedim ◽  
Maher Berzig ◽  
Ahdi Noomen Ajmi

Abstract Consider an ordered Banach space and f,g two self-operators defined on the interior of its positive cone. In this article, we prove that the equation f(X)=g(X) has a positive solution, whenever f is strictly \alpha -concave g-monotone or strictly (-\alpha ) -convex g-antitone with g super-homogeneous and surjective. As applications, we show the existence of positive definite solutions to new classes of nonlinear matrix equations.


Sign in / Sign up

Export Citation Format

Share Document