Traditional Critical Path Method versus Critical Chain Project Management: A Comparative View

Author(s):  
Mohammed Shurrab
Author(s):  
Mohammed Shurrab ◽  
Ghaleb Abbasi

Critical Chain Project Management (CCPM) provided a tangible progress to the Project Management Body of Knowledge. The critical chain project management (CCPM) differs from the traditional Critical Path Method (CPM) which includes never changing resource dependencies. CCPM improves the project plan by aggregating uncertainty into buffers at the end of activity paths. In this research, one hundred twenty random projects were generated and analyzed using Microsoft Project software according to the traditional CPM and the CCPM once using the sum of squares (SSQ) method and another using the cut & past (C&PM) method. CCPM-SSQ method revealed an average savings of 13% and 43% in duration and cost, with a standard deviation of 21 and 11 for duration and cost respectively. While the CCPM-C&PM method revealed an average overestimation of about 2% in duration and 43% savings in cost, with a standard deviation of 25 and 11 for duration and cost respectively.


Author(s):  
Jose Finocchio Junior ◽  
Marcelo Ramos Martins

The present study discusses the adequacy of the Critical Chain Project Management Method (CCPM) — also known as the Critical Chain Method — for scheduling projects involving shutdowns on oil platforms, as such projects involve decision-making processes under risk conditions. The CCPM is based on the Theory of Constraints and aims at providing more precise and more clearly focused control instruments than those traditionally used in the Critical Path Method (CPM). The CCPM also indicates the best moments to act and where and how the action should be directed. The hypothesis underlying the research is that the CCPM portrays, more adequately than the CPM, the uncertainty that exists in a platform shutdown. This characteristic also makes it possible to draw up a schedule that is both more realistic and more challenging, as it addresses the goal of causing less interruption of production. On the basis of this hypothesis, the two main questions that oriented the entire investigation were: 1) Is the CCPM suitable for scheduling the shutdown of an offshore oil platform and, 2) What advantages might it have over the traditional methods in use? To answer these questions the authors reviewed the existing bibliography on the topic and made direct on-site observations during an actual shutdown. In addition, interviews were held with a number of specialists in the area using qualitative approaches, namely, semi-structured interviews, focus groups, and action research.


2015 ◽  
Vol 809-810 ◽  
pp. 1390-1395 ◽  
Author(s):  
Iwona Paprocka ◽  
Weronika Czuwaj

Critical Chain Project Management (CCPM) is based on a network planning and the Theory of Constraints. The importance of management of uncertainty and deviations that occur during a project is emphasized. The probability of the project completion in a predefined time limit, or even before the time limit is increased. Literature analysis indicates that other types of buffers must be applied (buffer supporting a project, buffer reacting on a critical path, buffer reacting on a non-critical path) apart of feeding, resource and project buffers. Applying the additional buffers keeps the critical path in the same position and maintains the unchanging due date of the project. Methods estimating size of feeding and project buffers are identified: half of the chain method, square root of fault method, modified method of square root of fault, method taking into account due date of the project. In this paper, a new method estimating a size of resource buffer and selecting a location of resource buffer based on the theory of probability is presented. In this paper, the CCPM method is applied to estimate due date of the mining machine production project.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tarek Salama ◽  
Ahmad Salah ◽  
Osama Moselhi

Purpose The purpose of this paper is to present a new method for project tracking and control of integrated offsite and onsite activities in modular construction considering practical characteristics associated with this type of construction. Design/methodology/approach The design embraces building information modelling and integrates last planner system (LPS), linear scheduling method (LSM) and critical chain project management (CCPM) to develop tracking and control procedures for modular construction projects. The developed method accounts for constraints of resources continuity and uncertainties associated with activity duration. Features of proposed method are illustrated in a case example for tracking and control of modular projects. Findings Comparison between developed schedule and Monte Carlo simulation showed that baseline duration generated from simulation exceeds that produced by developed method by 12% and 10% for schedules with 50% and 90% confidence level, respectively. These percentages decrease based on interventions of members of project team in the LPS sessions. The case example results indicate that project is delayed 5% and experienced cost overrun of 2.5%. Originality/value Developed method integrated LPS, LSM and CCPM while using metrics for reliability assessment of linear schedules, namely, critical percent plan complete (PPCcr) and buffer index (BI). PPCcr and BI measure percentage of plan completion for critical activities and buffer consumption, respectively. The developed method provides a systematic procedure for forecasting look-ahead schedules using forecasting correction factor Δt and a newly developed tracking and control procedure that uses PPCcr and BI. Quantitative cost analysis is also provided to forecast and monitor project costs to prove the robustness of proposed framework.


Sign in / Sign up

Export Citation Format

Share Document