Utilization of Remote Sensing Technology in Geological Mapping: A Case Study in Part of 'Asir', Southern Arabian Shield

1990 ◽  
Vol 3 (1) ◽  
pp. 377-387 ◽  
Author(s):  
MOHAMMED QARI
2020 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
Wei Yang

<p>Remote sensing technology is widely used in various industries in China, and plays its own role. In geological surveying and mapping, its remote sensing technology can optimize the process of geological surveying and mapping, change the traditional working methods, and make its geological surveying and mapping results more accurate. Therefore, it is necessary to understand the applications of remote sensing technology in geological mapping. In this paper, we need to understand the content of remote sensing technology first, and then explain the specific application of remote sensing technology in geological surveying and mapping, explain the development prospect of remote sensing technology, and provide reference for the corresponding researchers.</p>


2014 ◽  
Vol 962-965 ◽  
pp. 127-131
Author(s):  
Xin Xing Liu

Remote sensing technology as a kind of new and advanced technology has been playing an important role in geological mapping and prospecting. A single kind of remote sensing data always has both advantages and disadvantages. And with multispectral remote sensing data types increasing, the integrated application of multi-source remote sensing data will be one of the development trend of remote sensing geology. In this paper, comprehensive utilization of multi-source remote sensing data such as ETM+, ASTER, Worldview-II and DEM, lithology and geological structure of Qiangduo area in Tibet were interpreted in different levels and mineralized alteration information also was extracted. Then on the basis of modern metallogenic theory, analyzed the multiple mineralization favorite information, established the remote sensing prediction model, and on the GIS platform, carried out metallogenic prediction of the study area. The field validation shows that the results of the prediction are relatively accurate and remote sensing technology can improve the efficiency of geological work.


2019 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Fitriani Agustin ◽  
Sutikno Bronto

Remote sensing technology greatly helps to identify the various of volcano features, including active, old and ancient volcanoes. The aim of this  paper is intended to introduce various volcanic features in the Gede Volcano Complexs (GVC) and souronding area; compose volcanostratigraphy; and estimate the history of the volcanoes. The method used is a visual interpretation 9 meters spatial resolution of Digital Elevation Model (DEM) TerraSar-x image. Indonesian Stratigraphy Nomenclature Guide 1996 was implemented in vocanostratigraphy unit classification, involving Arc, Super Brigate, Brigate, Crown and Hummockly. Based on the interpretation the DEM image, volcanostratigraphic unit the Gede Volcano Complex consists of Bregade Masigit (Br. M.), which consists of Joklok (Gm.J.) and Gegerbentang (Gm.G.) Hummocs; Crown Lingkung (Kh.L.) consisting of Pangrango (Gm.P.), Situ Gunung (Gm Sg.), Cikahuripan (Gm.Ck.), Pasir Prahu (Gm.Ph) Hummocs; Gege Crown (Kh.G.), which is located in the east of Lingkung Crown. The Gede Crown consists of Gumuruh humock (Gm.Gh.), Gunung Gede lava flows (LG 1,2,3,4,5), and giant debrise avalances (gv-G). The geological mapping based volcanostratigraphy is very useful for exploration of mineral and energy resources, as well as geological hazards.Keywords : volcanostratigraphy, DEM TerraSar-x image, Gunung Gede Complexs.


Jurnal Wasian ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Nurlita Indah Wahyuni

The development of remote sensing technology makes it possible to utilize its data in many sectors including forestry. Remote sensing image has been used to map land cover and monitor deforestation. This paper presents utilization of ALOS PALSAR image to estimate and map aboveground biomass at natural forest of Bogani Nani Wartabone National Park especially SPTN II Doloduo and SPTN III Maelang. We used modeling method between biomass value from direct measurement and digital number of satellite image. There are two maps which present the distribution of biomass and carbon from ALOS PALSAR image with 50 m spatial resolution. These maps were built based on backscatter polarization of HH and HV bands. The maps indicate most research area dominated with biomass stock 0-5.000 ton/ha.


Sign in / Sign up

Export Citation Format

Share Document