scholarly journals Up-Gradation of Power System Protection Scheme through TCP/IP Using GUI in MATLAB/Simulink

2012 ◽  
Vol 23 (1) ◽  
pp. 21-36
Author(s):  
Mohammad Ali Mohammad Ali

The paper is concerned with the Power System Protection schemes and the resulting design requirement that enhances stability as well as control with the implementation of TCP/IP. It discusses the architecture that upgrades the existing scheme by controlling all the control signals traffic between generating units, transmission system, connected loads and protection devices that are sensitive to control signals using TCP/IP and results are compared using Graphics User Interface (GUI) in MATLAB/Simulink. Protection system describes latest breakers circuit using indirect tripping command from generating units that protects load side through load breakers that receives action signal from local controllers that have a direct communication linkage with main server having strong data base, directly monitors everything through TCP/IP platform using GUI.

2021 ◽  
Vol 17 (1) ◽  
pp. 19-25
Author(s):  
Ayesha Faryal ◽  
Farhana Umer ◽  
Muhammad Amjad ◽  
Zeeshan Rashid ◽  
Aoun Muhammad

Abstract The protection of power system is an essential trait in a huge network to efficiently detect and isolate the sections undergoing faults or abnormal behaviour. The key components of a protection scheme include circuit breakers, relays, switchgears and fuses which employ communication from one station to another to achieve high-speed tripping. The automation of these components at the laboratory level using programmable logic controller (PLC) along with supervisory control and data acquisition (SCADA) system owns paramount importance for intelligent decision making, sensing, actuating, monitoring and maintaining the record in the host server. This paper discusses such a technique for conventional power system protection laboratory at a new level of development to promote a control system through PLC and SCADA. The control system has indication of over and under values of voltage, load and frequency, which can trigger malfunctioning of equipment and must be rectified. Furthermore, ground fault and inverse current indication are added to the system for monitoring and controlling purposes. The proposed system enhances the efficiency and safety of the expensive equipment and the personnel to the next level and also introduces new standards of automated protection schemes for modern technical institutes.


2015 ◽  
Vol 18 (4) ◽  
pp. 28-39 ◽  
Author(s):  
Nagabhushan Mahadevan ◽  
Abhishek Dubey ◽  
Ajay Chhokra ◽  
Huangcheng Guo ◽  
Gabor Karsai

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 627
Author(s):  
Tomasz Bednarczyk ◽  
Mateusz Szablicki ◽  
Adrian Halinka ◽  
Piotr Rzepka ◽  
Paweł Sowa

Complex phase shifting transformer protection scheme and complexity of the object itself created a need to use simulation programs for their analysis. Often phase shifting transformer (PST) are modeled as a simplified series impedance and quadrature voltage source which cannot be used for power system protection analysis, especially in a transient condition. Therefore, the procedure of building realistic PST model was presented by using available transformer models with calculation of their parameters including interconnections between units. Paper consist calculations based on case study with symmetrical dual-core PST example. Additionally, theoretical background of PST principle, operation, and their impact of power system protection were introduced with numerus examples of PST model verification.


Author(s):  
S. Chandra Shekar ◽  
G.Ravi Kumar ◽  
S.V.N.L Lalitha

Micro-grids comprise Distributed Energy Resources (DER’s) with low voltage distribution networks having controllable loads those can operate with different voltage levels are connected to the micro-grid and operated in grid mode or islanding mode in a coordinated way of control. DER’s provides clear environment-economical benefits for society and consumer utilities. But their development poses great technical challenges mainly protection of main and micro grid. Protection scheme must have to respond to both the main grid and micro-grid faults. If the fault is occurs on main grid, the response must isolate the DER’s from the main grid rapidly to protect the system loads. If the fault ocuurs within the micro-grid, the protection scheme must coordinate and isolates the least priority possible part of the grid to eliminate the fault. In order to deal with the bidirectional energy flow due to large numbers of micro sources new protection schemes are required. The system is simulated using MATLAB Wavelet Tool box and Wavelet based Multi-resolution Analysis is considered. Wavelet based Multi-resolution Analysis is used for detection, discrimination and location of faults on transmission network.  This paper is discussed a transient current based micro-grid connected power system protection scheme using Wavelet Approach described on wavelet detailed-coefficients of Mother Biorthogonal 1.5 wavelet. The proposed algorithm is tested in micro-grid connected power systems environment and proved for the detection, discrimination and location of faults which is almost independent of fault impedance, fault inception angle (FIA) and fault distance of feeder line.


2012 ◽  
Vol 04 (06) ◽  
pp. 392-397
Author(s):  
Muhammad Qamar Raza ◽  
Muhammad Ali ◽  
Asadullah Khan ◽  
Waheed ur Rehman ◽  
Nauman Tareen ◽  
...  

IEE Review ◽  
1989 ◽  
Vol 35 (6) ◽  
pp. 220
Author(s):  
J.H. Naylor

Sign in / Sign up

Export Citation Format

Share Document