Optimum Design of Multistorey Unbraced Rigid Frames

Author(s):  
M.P. Saka ◽  
E.S. Kameshki
Keyword(s):  
1989 ◽  
Vol 42 (2) ◽  
pp. 27-37 ◽  
Author(s):  
Mark I. Reitman

Studies in structural optimization in Russia began more than a century ago and initially satisfied the needs of railroad engineering. Later Soviet academic researchers and engineers considered the optimum design of compressed and twisted bars, beams, arches, rigid frames, plates, shells, and various 3D structures under single and multiple statical, dynamical, and moving loads. Some new formulations of the optimization problems have been introduced and solved using classical and new mathematical methods. Several hundred contributions are briefly covered with references to 50 bibliographical sources.


1998 ◽  
Vol 69 (4) ◽  
pp. 433-442 ◽  
Author(s):  
M.P. Saka ◽  
E.S. Kameshki
Keyword(s):  

2013 ◽  
Vol 44 (8) ◽  
pp. 761-789 ◽  
Author(s):  
Farzaneh Hajabdollahi ◽  
Zahra Hajabdollahi ◽  
Hassan Hajabdollahi

10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


Sign in / Sign up

Export Citation Format

Share Document