Inelastic Buckling of Ring-Stiffened Circular Conical Shells under External Pressure

Author(s):  
C.T.F. Ross ◽  
H. Hamer
2007 ◽  
Vol 44 (04) ◽  
pp. 268-277
Author(s):  
Carl T.F. Ross ◽  
Andrew P. F. Little ◽  
Robert Allsop ◽  
Charles Smith ◽  
Marcus Engelhardt

The paper describes experimental tests carried out on three ring-reinforced circular conical shells that suffered plastic general instability under uniform external pressure. In this mode, the entire ring-shell combination buckles bodily in its flank. The cones were carefully machined from EN1A mild steel to a very high degree of precision. The paper also provides a design chart using the results obtained from these three vessels, together with the results of nine other vessels obtained from other tests. All 12 vessels failed by general instability. The design chart allows the possibility of obtaining a plastic knockdown factor, so that the theoretical elastic buckling pressures for perfect vessels can be divided by the plastic knockdown factor, to give the predicted buckling pressure. This method can also be used for the design of full-scale vessels.


2007 ◽  
Vol 44 (02) ◽  
pp. 77-81
Author(s):  
Carl T. F. Ross

The paper presents the theoretical and experimental results obtained when 15 machined circular section conical shells were tested to destruction under uniform external hydrostatic pressure. Three of the shells buckled elastically, but the other 12 buckled inelastically. Previous research has found that the inelastic buckling of such shells with small initial out-of-circularity has defied exact mathematical analysis, due to the fact that the initial out-of-circularity is very small and also of random distribution about the circumference. In this paper these results are used to provide a design chart that enables the inelastic buckling pressures of these vessels to be successfully determined. This design chart should prove to be more accurate, but less conservative, than existing design charts, so that the factor of ignorance is decreased and more reliability can be placed on the true factor of safety.


2008 ◽  
Vol 13-14 ◽  
pp. 213-223 ◽  
Author(s):  
Carl T.F. Ross ◽  
G. Andriosopoulos ◽  
Andrew P.F. Little

The paper describes experimental tests carried out on three ring-stiffened circular conical shells that suffered plastic general instability under uniform external pressure. The cones were carefully machined from EN1A mild steel to a very high degree of precision. The end diameters of the cones, together with their thicknesses were the same, but the size of their ring stiffeners was different for each of the three vessels. In the general instability mode of collapse, the entire ring-shell combination buckles bodily in its flank. The paper also provides three design charts using the results obtained from these three vessels, together with the results obtained for twelve other vessels from other tests. All 15 vessels failed by general instability. One of these design charts was based on conical shell theory and two of the design charts were based on the general instability of ring-stiffened circular cylindrical shells, using Kendrick’s theory, which were made equivalent to ring-stiffened circular conical shells suffering from general instability under uniform external pressure. The design charts allowed the possibility of obtaining plastic knockdown factors, so that the theoretical elastic buckling pressures, for perfect vessels, could be divided by the appropriate plastic knockdown factor, to give the predicted buckling pressure. The theoretical work is based on the solutions of Kendrick, together with the finite element program of Ross, namely RCONEBUR and the commercial finite element package ANSYS. This method can also be used for the design of full-scale vessels.


1999 ◽  
Vol 30 (9-11) ◽  
pp. 631-647 ◽  
Author(s):  
C.T.F. Ross ◽  
D. Sawkins ◽  
J. Thomas ◽  
A.P.F. Little

1974 ◽  
Vol 18 (04) ◽  
pp. 272-277
Author(s):  
C. T. F. Ross

Numerical solutions have been produced for the asymmetric instability of thin-walled circular cylindrical and truncated conical shells under external pressure. The solutions for the circular cylinder have shown that the assumed buckling configurations of Nash [l]2 and Kaminsky [2] were quite reasonable for fixed ends. Comparison was also made of the finite-element solution of conical shells with other analyses. From these calculations, it was shown that the numerical solutions were superior to the analytical ones, as the former could be readily applied to vessels of varying thickness or those subjected to unsymmetrical loading or with complex boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document